全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

Drought-Adaptation Potential in Fagus sylvatica: Linking Moisture Availability with Genetic Diversity and Dendrochronology

DOI: 10.1371/journal.pone.0033636

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background Microevolution is essential for species persistence especially under anticipated climate change scenarios. Species distribution projection models suggested that the dominant tree species of lowland forests in Switzerland, European beech (Fagus sylvatica L.), might disappear from most areas due to expected longer dry periods. However, if genotypes at the moisture boundary of the species climatic envelope are adapted to lower moisture availability, they can serve as seed source for the continuation of beech forests under changing climates. Methodology/Principal Findings With an AFLP genome scan approach, we studied neutral and potentially adaptive genetic variation in Fagus sylvatica in three regions containing a dry and a mesic site each (nind. = 241, nmarkers = 517). We linked this dataset with dendrochronological growth measures and local moisture availabilities based on precipitation and soil characteristics. Genetic diversity decreased slightly at dry sites. Overall genetic differentiation was low (Fst = 0.028) and Bayesian cluster analysis grouped all populations together suggesting high (historical) gene flow. The Bayesian outlier analyses indicated 13 markers with three markers differing between all dry and mesic sites and the others between the contrasting sites within individual regions. A total of 41 markers, including seven outlier loci, changed their frequency with local moisture availability. Tree height and median basal growth increments were reduced at dry sites, but marker presence/absence was not related to dendrochronological characteristics. Conclusion and Their Significance The outlier alleles and the makers with changing frequencies in relation to moisture availability indicate microevolutionary processes occurring within short geographic distances. The general genetic similarity among sites suggests that ‘preadaptive’ genes can easily spread across the landscape. Yet, due to the long live span of trees, fostering saplings originating from dry sites and grown within mesic sites might increase resistance of beech forests during the anticipated longer dry periods.

References

[1]  European Environmental Agency (2004) Impacts of Europe's changing climate - An indicator-based assessemt. 170 p. Luxembourg.
[2]  Zimmermann NE, Bolliger J, Gehrig-Fasel J, Guisan A, Kienast F, et al. (2006) Wo wachsen die B?ume in 100 Jahren? Wald und Klimalwandel Forum für Wissen 2006. Biel, Switzerland: Gassmann. pp. 63–71.
[3]  Meier ES, Edwards TC, Kienast F, Dobbertin M, Zimmermann NE (2011) Co-occurrence patterns of trees along macro-climatic gradients and their potential influence on the present and future distribution of Fagus sylvatica L. Journal of Biogeography 38: 371–382.
[4]  Araujo MB, Guisan A (2006) Five (or so) challenges for species distribution modelling. Journal of Biogeography 33: 1677–1688.
[5]  Stinchcombe JR, Hoekstra HE (2008) Combining population genomics and quantitative genetics: finding the genes underlying ecologically important traits. Heredity 100: 158–170.
[6]  Storz JF (2005) Using genome scans of DNA polymorphism to infer adaptive population divergence. Molecular Ecology 14: 671–688.
[7]  Joost S, Bonin A, Bruford MW, Despres L, Conord C, et al. (2007) A spatial analysis method (SAM) to detect candidate loci for selection: towards a landscape genomics approach to adaptation. Molecular Ecology 16: 3955–3969.
[8]  Leimu R, Mutikainen P, Koricheva J, Fischer M (2006) How general are positive relationships between plant population size, fitness and genetic variation? Journal of Ecology 94: 942–952.
[9]  Hampe A, Petit RJ (2005) Conserving biodiversity under climate change: the rear edge matters. Ecology Letters 8: 461–467.
[10]  Foll M, Gaggiotti O (2008) A genome-scan method to iIdentify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective. Genetics 180: 977–993.
[11]  Perez-Figueroa A, Garcia-Pereira MJ, Saura M, Rolan-Alvarez E, Caballero A (2010) Comparing three different methods to detect selective loci using dominant markers. Journal of Evolutionary Biology 23: 2267–2276.
[12]  Magri D, Vendramin GG, Comps B, Dupanloup I, Geburek T, et al. (2006) A new scenario for the Quaternary history of European beech populations: palaeobotanical evidence and genetic consequences. New Phytologist 171: 199–221.
[13]  Oddou-Muratorio S, Bontemps A, Klein EK, Chybicki I, Vendramin GG, et al. (2010) Comparison of direct and indirect genetic methods for estimating seed and pollen dispersal in Fagus sylvatica and Fagus crenata. Forest Ecology and Management 259: 2151–2159.
[14]  Jump AS, Hunt JM, Martinez-Izquierdo JA, Penuelas J (2006) Natural selection and climate change: temperature-linked spatial and temporal trends in gene frequency in Fagus sylvatica. Molecular Ecology 15: 3469–3480.
[15]  Peuke A, Rennenberg H (2004) Carbon, nitrogen, phosphorus, and sulphur concentration and partitioning in beech ecotypes (Fagus sylvatica L.): phosphorus most affected by drought. Trees-Structure and Function 18: 639–648.
[16]  Peuke AD, Rennenberg H (2011) Impacts of drought on mineral macro- and microelements in provenances of beech (Fagus sylvatica L.) seedlings. Tree Physiology 31: 196–207.
[17]  Peuke AD, Schraml C, Hartung W, Rennenberg H (2002) Identification of drought-sensitive beech ecotypes by physiological parameters. New Phytologist 154: 373–387.
[18]  Rose L, Leuschner C, Kockemann B, Buschmann H (2009) Are marginal beech (Fagus sylvatica L.) provenances a source for drought tolerant ecotypes? European Journal of Forest Research 128: 335–343.
[19]  Kroymann J, Mitchell-Olds T (2005) Epistasis and balanced polymorphism influencing complex trait variation. Nature 435: 95–98.
[20]  Bone E, Farres A (2001) Trends and rates of microevolution in plants. Genetica 112: 165–182.
[21]  Merzeau D, Comps B, Thiebaut B, Letouzey J (1994) Estimation of Fagus sylvatica L. mating system parameters in natural populations. Annales Des Sciences Forestieres 51: 163–173.
[22]  Hess HE, Landolt E, Hirzel R (1967) Flora der Schweiz und angrenzende Gebiete, Band I. Basel und Stuttgart: Birkh?user Verlag.
[23]  Perea R, Miguel AS, Gil L (2011) Flying vs. climbing: Factors controlling arboreal seed removal in oak-beech forests. Forest Ecology and Management 262: 1251–1257.
[24]  Overgaard R, Gemmel P, Karlsson M (2007) Effects of weather conditions on mast year frequency in beech (Fagus sylvatica L.) in Sweden. Forestry 80: 553–563.
[25]  Z'Graggen S (1992) Dendrohistometrisch-klimatologische Untersuchung an Buchen (Fagus sylvatica L.): University of Basel, Switzerland.
[26]  Ellenberg H, Kl?tzli F (1972) Waldgesellschaften und Waldstandorte der Schweiz. Mitteilungen der Eidgen?ssischen Anstalt für das forstliche Versuchswesen 48: 587–930.
[27]  Cioldi F, Baltensweiler A, Br?ndli U-B, Duc P, Ginzler C, et al. (2010) Waldressourcen. In: Br?ndli U-B, editor. Schweizerisches Landesfostinventar: Ergebnisse der dritten Erhebung 2004–2006: Birmensdorf, Eidgen?ssische Forschungsanstalt für Wald, Schnee und Landschaft WSL. pp. 31–113. Bern, Bundesamt für Umwelt, BAFU.
[28]  Br?ndli U-B (Red) (2010) Schweizerisches Landesforstinventar: Ergebnisse der dritten Erhebung 2004–2006: Birmensdorf, Eidgen?ssische Forschungsanstalt für Wald, Schnee und Landschaft WSL. Bern, Bundesamt für Umwelt, BAFU.
[29]  Weber P, Pluess AR, Mühlethaler U (2010) Genetic resources of beech in Switzerland. Communicationes Instituti Forestalis Bohemicae 25: 248–255.
[30]  Bürgi M, Schuler A (2003) Driving forces of forest management - an analysis of regeneration practices in the forests of the Swiss Central Plateau during the 19th and 20th century. Forest Ecology and Management 176: 173–183.
[31]  Thornton PE, Running SW, White MA (1997) Generating surfaces of daily meteorological variables over large regions of complex terrain. Journal of Hydrology 190: 214–251.
[32]  Turc L (1961) Evaluation des besoins en eau d'irrigation, évapotranspiration potentielle, formulation simplifié et mise à jour. Annales Agronomiques 12: 13–49.
[33]  AG Bodenkunde (1982) Bodenkundliche Kartieranleitung: Schweizerbart, Stuttgart.
[34]  Vos P, Hogers R, Bleeker M, Reijans M, Vandelee T, et al. (1995) AFLP - A new technique for DNA-fingerprinting. Nucleic Acids Research 23: 4407–4414.
[35]  Whitlock R, Hipperson H, Mannarelli M, Butlin RK, Burke T (2008) An objective, rapid and reproducible method for scoring AFLP peak-height data that minimizes genotyping error. Molecular Ecology Resources 8: 725–735.
[36]  Lynch M, Milligan BG (1994) Analysis of population genetic-structure with RAPD markers. Molecular Ecology 3: 91–99.
[37]  Storey JD (2002) A direct approach to false discovery rates. Journal of the Royal Statistical Society Series B-Statistical Methodology 64: 479–498.
[38]  RDevelopmentCoreTeam (2009) R: A language and environment for statistical computing. Vienna, Austria.
[39]  Dasmahapatra KK, Lacy RC, Amos W (2008) Estimating levels of inbreeding using AFLP markers. Heredity 100: 286–295.
[40]  Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources 10: 564–567.
[41]  Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes 6: 288–295.
[42]  Corander J, Marttinen P (2006) Bayesian identification of admixture events using multilocus molecular markers. Molecular Ecology 15: 2833–2843.
[43]  Beaumont MA, Balding DJ (2004) Identifying adaptive genetic divergence among populations from genome scans. Molecular Ecology 13: 969–980.
[44]  Jeffreys H (1961) Theory of probability. Oxford: Clarendon Press. 447 p.
[45]  Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed Effects Models and Extensions in Ecology with R. New York, NY, USA: Springer Science+Business Media, LLC 2009.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133