全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

Developmental Characterization of the MicroRNA-Specific C. elegans Argonautes alg-1 and alg-2

DOI: 10.1371/journal.pone.0033750

Full-Text   Cite this paper   Add to My Lib

Abstract:

The genes alg-1 and alg-2 (referred to as “alg-1/2”) encode the Argonaute proteins affiliated to the microRNA (miRNA) pathway in C. elegans. Bound to miRNAs they form the effector complex that effects post-transcriptional gene silencing. In order to define biological features important to understand the mode of action of these Argonautes, we characterize aspects of these genes during development. We establish that alg-1/2 display an overlapping spatio-temporal expression profile and shared association to a miRNAs set, but with gene-specific predominant expression in various cells and increased relative association to defined miRNAs. Congruent with their spatio-temporal coincidence and regardless of alg-1/2 drastic post-embryonic differences, only loss of both genes leads to embryonic lethality. Embryos without zygotic alg-1/2 predominantly arrest during the morphogenetic process of elongation with defects in the epidermal-muscle attachment structures. Altogether our results highlight similarities and specificities of the alg-1/2 likely to be explained at different cellular and molecular levels.

References

[1]  Hutvagner G, Simard MJ (2008) Argonaute proteins: key players in RNA silencing. Nat Rev Mol Cell Biol 9: 22–32.
[2]  Ding SW, Voinnet O (2007) Antiviral immunity directed by small RNAs. Cell 130: 413–426.
[3]  Fabian MR, Sonenberg N, Filipowicz W (2010) Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem 79: 351–379.
[4]  Siomi MC, Saito K, Siomi H (2008) How selfish retrotransposons are silenced in Drosophila germline and somatic cells. FEBS Lett 582: 2473–2478.
[5]  Klattenhoff C, Theurkauf W (2008) Biogenesis and germline functions of piRNAs. Development 135: 3–9.
[6]  Grishok A, Pasquinelli AE, Conte D, Li N, Parrish S, et al. (2001) Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell 106: 23–34.
[7]  Liu J, Carmell MA, Rivas FV, Marsden CG, Thomson JM, et al. (2004) Argonaute2 is the catalytic engine of mammalian RNAi. Science 305: 1437–1441.
[8]  Su H, Trombly MI, Chen J, Wang X (2009) Essential and overlapping functions for mammalian Argonautes in microRNA silencing. Genes Dev 23: 304–317.
[9]  Forstemann K, Horwich MD, Wee L, Tomari Y, Zamore PD (2007) Drosophila microRNAs are sorted into functionally distinct argonaute complexes after production by dicer-1. Cell 130: 287–297.
[10]  Conine CC, Batista PJ, Gu W, Claycomb JM, Chaves DA, et al. (2010) Argonautes ALG-3 and ALG-4 are required for spermatogenesis-specific 26G-RNAs and thermotolerant sperm in Caenorhabditis elegans. Proc Natl Acad Sci U S A 107: 3588–3593.
[11]  Iwasaki S, Kawamata T, Tomari Y (2009) Drosophila argonaute1 and argonaute2 employ distinct mechanisms for translational repression. Mol Cell 34: 58–67.
[12]  Jannot G, Bajan S, Giguere NJ, Bouasker S, Banville IH, et al. (2011) The ribosomal protein RACK1 is required for microRNA function in both C. elegans and humans. EMBO Rep 12: 581–586.
[13]  Chan SP, Slack FJ (2009) Ribosomal protein RPS-14 modulates let-7 microRNA function in Caenorhabditis elegans. Dev Biol 334: 152–160.
[14]  Bukhari SIA, Vasquez-Rifo A, Gagné D, Paquet ER, Zetka M, et al. (2012) The microRNA pathway controls germ cell proliferation and differentiation in C. elegans. Cell Res. doi:10.1038/cr.2012.31.
[15]  Chisholm AD, Hardin J (2005) Epidermal morphogenesis. WormBook 1–22.
[16]  Zhang H, Labouesse M (2010) The making of hemidesmosome structures in vivo. Dev Dyn 239: 1465–1476.
[17]  Zahreddine H, Zhang H, Diogon M, Nagamatsu Y, Labouesse M (2010) CRT-1/calreticulin and the E3 ligase EEL-1/HUWE1 control hemidesmosome maturation in C. elegans development. Curr Biol 20: 322–327.
[18]  Hresko MC, Williams BD, Waterston RH (1994) Assembly of body wall muscle and muscle cell attachment structures in Caenorhabditis elegans. J Cell Biol 124: 491–506.
[19]  Wu E, Thivierge C, Flamand M, Mathonnet G, Vashisht AA, et al. (2010) Pervasive and cooperative deadenylation of 3′UTRs by embryonic microRNA families. Mol Cell 40: 558–570.
[20]  Zhong M, Niu W, Lu ZJ, Sarov M, Murray JI, et al. (2010) Genome-wide identification of binding sites defines distinct functions for Caenorhabditis elegans PHA-4/FOXA in development and environmental response. PLoS Genet 6: e1000848.
[21]  Azuma-Mukai A, Oguri H, Mituyama T, Qian ZR, Asai K, et al. (2008) Characterization of endogenous human Argonautes and their miRNA partners in RNA silencing. Proc Natl Acad Sci U S A 105: 7964–7969.
[22]  Martinez NJ, Ow MC, Reece-Hoyes JS, Barrasa MI, Ambros VR, et al. (2008) Genome-scale spatiotemporal analysis of Caenorhabditis elegans microRNA promoter activity. Genome Res 18: 2005–2015.
[23]  Isik M, Korswagen HC, Berezikov E (2010) Expression patterns of intronic microRNAs in Caenorhabditis elegans. Silence 1: 5.
[24]  Johnston RJ, Hobert O (2003) A microRNA controlling left/right neuronal asymmetry in Caenorhabditis elegans. Nature 426: 845–849.
[25]  Mi S, Cai T, Hu Y, Chen Y, Hodges E, et al. (2008) Sorting of small RNAs into Arabidopsis argonaute complexes is directed by the 5′ terminal nucleotide. Cell 133: 116–127.
[26]  Steiner FA, Hoogstrate SW, Okihara KL, Thijssen KL, Ketting RF, et al. (2007) Structural features of small RNA precursors determine Argonaute loading in Caenorhabditis elegans. Nat Struct Mol Biol 14: 927–933.
[27]  Jannot G, Boisvert ME, Banville IH, Simard MJ (2008) Two molecular features contribute to the Argonaute specificity for the microRNA and RNAi pathways in C. elegans. RNA 14: 829–835.
[28]  Tomari Y, Du T, Zamore PD (2007) Sorting of Drosophila small silencing RNAs. Cell 130: 299–308.
[29]  Knight SW, Bass BL (2001) A role for the RNase III enzyme DCR-1 in RNA interference and germ line development in Caenorhabditis elegans. Science 293: 2269–2271.
[30]  Denli AM, Tops BB, Plasterk RH, Ketting RF, Hannon GJ (2004) Processing of primary microRNAs by the Microprocessor complex. Nature 432: 231–235.
[31]  Tops BB, Plasterk RH, Ketting RF (2006) The Caenorhabditis elegans Argonautes ALG-1 and ALG-2: almost identical yet different. Cold Spring Harb Symp Quant Biol 71: 189–194.
[32]  Giraldez AJ, Mishima Y, Rihel J, Grocock RJ, Van Dongen S, et al. (2006) Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science 312: 75–79.
[33]  Lund E, Liu M, Hartley RS, Sheets MD, Dahlberg JE (2009) Deadenylation of maternal mRNAs mediated by miR-427 in Xenopus laevis embryos. RNA 15: 2351–2363.
[34]  Miska EA, Alvarez-Saavedra E, Abbott AL, Lau NC, Hellman AB, et al. (2007) Most Caenorhabditis elegans microRNAs are individually not essential for development or viability. PLoS Genet 3: e215.
[35]  Alvarez-Saavedra E, Horvitz HR (2010) Many families of C. elegans microRNAs are not essential for development or viability. Curr Biol 20: 367–373.
[36]  Shaw WR, Armisen J, Lehrbach NJ, Miska EA (2010) The conserved miR-51 microRNA family is redundantly required for embryonic development and pharynx attachment in Caenorhabditis elegans. Genetics 185: 897–905.
[37]  Morita S, Horii T, Kimura M, Goto Y, Ochiya T, et al. (2007) One Argonaute family member, Eif2c2 (Ago2), is essential for development and appears not to be involved in DNA methylation. Genomics 89: 687–696.
[38]  Alisch RS, Jin P, Epstein M, Caspary T, Warren ST (2007) Argonaute2 is essential for mammalian gastrulation and proper mesoderm formation. PLoS Genet 3: e227.
[39]  Cheloufi S, Dos Santos CO, Chong MM, Hannon GJ (2010) A dicer-independent miRNA biogenesis pathway that requires Ago catalysis. Nature 465: 584–589.
[40]  Meyer WJ, Schreiber S, Guo Y, Volkmann T, Welte MA, et al. (2006) Overlapping functions of argonaute proteins in patterning and morphogenesis of Drosophila embryos. PLoS Genet 2: e134.
[41]  Zhang H, Landmann F, Zahreddine H, Rodriguez D, Koch M, et al. (2011) A tension-induced mechanotransduction pathway promotes epithelial morphogenesis. Nature 471: 99–103.
[42]  Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77: 71–94.
[43]  Mello C, Fire A (1995) DNA transformation. Methods in Cell Biology 48: 451–482.
[44]  Mello CC, Kramer JM, Stinchcomb D, Ambros V (1991) Efficient gene transfer in C. elegans: extrachromosomal maintenance and integration of transforming sequences. Embo J 10: 3959–3970.
[45]  Bettinger JC, Lee K, Rougvie AE (1996) Stage-specific accumulation of the terminal differentiation factor LIN-29 during Caenorhabditis elegans development. Development 122: 2517–2527.
[46]  Hutvágner G, Simard MJ, Mello CC, Zamore PD (2004) Sequence-specific inhibition of small RNA function. PLoS Biol 2: E98.
[47]  Miska EA, Alvarez-Saavedra E, Townsend M, Yoshii A, Sestan N, et al. (2004) Microarray analysis of microRNA expression in the developing mammalian brain. Genome Biol 5: R68.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133