HIV-1 Nef enhances dendritic cell (DC)-mediated viral transmission to CD4+ T cells, but the underlying mechanism is not fully understood. It is also unknown whether HIV-1 infected DCs play a role in activating CD4+ T cells and enhancing DC-mediated viral transmission. Here we investigated the role of HIV-1 Nef in DC-mediated viral transmission and HIV-1 infection of primary CD4+ T cells using wild-type HIV-1 and Nef-mutated viruses. We show that HIV-1 Nef facilitated DC-mediated viral transmission to activated CD4+ T cells. HIV-1 expressing wild-type Nef enhanced the activation and proliferation of primary resting CD4+ T cells. However, when co-cultured with HIV-1-infected autologous DCs, there was no significant trend for infection- or Nef-dependent proliferation of resting CD4+ T cells. Our results suggest an important role of Nef in DC-mediated transmission of HIV-1 to activated CD4+ T cells and in the activation and proliferation of resting CD4+ T cells, which likely contribute to viral pathogenesis.
References
[1]
Coleman CM, Wu L (2009) HIV interactions with monocytes and dendritic cells: viral latency and reservoirs. Retrovirology 6: 51.
[2]
Wu L (2008) Biology of HIV mucosal transmission. Current Opinion in HIV and AIDS 3: 534–540.
[3]
Wu L, KewalRamani VN (2006) Dendritic-cell interactions with HIV: infection and viral dissemination. Nat Rev Immunol 6: 859–868.
[4]
Piguet V, Steinman RM (2007) The interaction of HIV with dendritic cells: outcomes and pathways. Trends Immunol 28: 503–510.
[5]
Dong C, Janas AM, Wang JH, Olson WJ, Wu L (2007) Characterization of human immunodeficiency virus type 1 replication in immature and mature dendritic cells reveals dissociable cis- and trans-infection. J Virol 81: 11352–11362.
[6]
Burleigh L, Lozach P-Y, Schiffer C, Staropoli I, Pezo V, et al. (2006) Infection of dendritic cells (DCs), not DC-SIGN-mediated internalization of human immunodeficiency virus, is required for long-term transfer of virus to T cells. J Virol 80: 2949–2957.
[7]
Turville SG, Santos JJ, Frank I, Cameron PU, Wilkinson J, et al. (2004) Immunodeficiency virus uptake, turnover, and 2-phase transfer in human dendritic cells. Blood 103: 2170–2179.
[8]
Coleman CM, Spearman P, Wu L (2011) Tetherin does not significantly restrict dendritic cell-mediated HIV-1 transmission and its expression is upregulated by newly synthesized HIV-1 Nef. Retrovirology 8: 26.
[9]
Wang JH, Janas AM, Olson WJ, KewalRamani VN, Wu L (2007) CD4 coexpression regulates DC-SIGN-mediated transmission of human immunodeficiency virus type 1. J Virol 81: 2497–2507.
[10]
Geijtenbeek TB, Kwon DS, Torensma R, van Vliet SJ, van Duijnhoven GC, et al. (2000) DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells. Cell 100: 587–597.
[11]
Gurney KB, Elliott J, Nassanian H, Song C, Soilleux E, et al. (2005) Binding and transfer of human immunodeficiency virus by DC-SIGN+ cells in human rectal mucosa. J Virol 79: 5762–5773.
[12]
Wang JH, Janas AM, Olson WJ, Wu L (2007) Functionally distinct transmission of human immunodeficiency virus type 1 mediated by immature and mature dendritic cells. J Virol 81: 8933–8943.
[13]
Arrighi JF, Pion M, Garcia E, Escola JM, van Kooyk Y, et al. (2004) DC-SIGN-mediated infectious synapse formation enhances X4 HIV-1 transmission from dendritic cells to T cells. J Exp Med 200: 1279–1288.
[14]
Baribaud F, Pohlmann S, Doms RW (2001) The role of DC-SIGN and DC-SIGNR in HIV and SIV attachment, infection, and transmission. Virology 286: 1–6.
[15]
Gummuluru S, KewalRamani VN, Emerman M (2002) Dendritic cell-mediated viral transfer to T cells is required for human immunodeficiency virus type 1 persistence in the face of rapid cell turnover. J Virol 76: 10692–10701.
[16]
Gummuluru S, Rogel M, Stamatatos L, Emerman M (2003) Binding of human immunodeficiency virus type 1 to immature dendritic cells can occur independently of DC-SIGN and mannose binding C-type lectin receptors via a cholesterol-dependent pathway. J Virol 77: 12865–12874.
[17]
Izquierdo-Useros N, Blanco J, Erkizia I, Fernandez-Figueras MT, Borras FE, et al. (2007) Maturation of blood derived dendritic cells enhances HIV-1 capture and transmission. J Virol 81: 7559–7570.
[18]
Kwon DS, Gregorio G, Bitton N, Hendrickson WA, Littman DR (2002) DC-SIGN-mediated internalization of HIV is required for trans-enhancement of T cell infection. Immunity 16: 135–144.
[19]
Moris A, Pajot A, Blanchet F, Guivel-Benhassine F, Salcedo M, et al. (2006) Dendritic cells and HIV-specific CD4+ T cells: HIV antigen presentation, T-cell activation, and viral transfer. Blood 108: 1643–1651.
[20]
Wu L, Martin TD, Vazeux R, Unutmaz D, KewalRamani VN (2002) Functional evaluation of DC-SIGN monoclonal antibodies reveals DC-SIGN interactions with ICAM-3 do not promote human immunodeficiency virus type 1 transmission. J Virol 76: 5905–5914.
[21]
Trumpfheller C, Park CG, Finke J, Steinman RM, Granelli-Piperno A (2003) Cell type-dependent retention and transmission of HIV-1 by DC-SIGN. Int Immunol 15: 289–298.
[22]
McDonald D, Wu L, Bohks SM, KewalRamani VN, Unutmaz D, et al. (2003) Recruitment of HIV and its receptors to dendritic cell-T cell junctions. Science 300: 1295–1297.
[23]
Kestler HW 3rd, Ringler DJ, Mori K, Panicali DL, Sehgal PK, et al. (1991) Importance of the nef gene for maintenance of high virus loads and for development of AIDS. Cell 65: 651–662.
[24]
Daniel MD, Kirchhoff F, Czajak SC, Sehgal PK, Desrosiers RC (1992) Protective effects of a live attenuated SIV vaccine with a deletion in the nef gene. Science 258: 1938–1941.
[25]
Kirchhoff F, Greenough TC, Brettler DB, Sullivan JL, Desrosiers RC (1995) Brief report: absence of intact nef sequences in a long-term survivor with nonprogressive HIV-1 infection. N Engl J Med 332: 228–232.
[26]
Deacon NJ, Tsykin A, Solomon A, Smith K, Ludford-Menting M, et al. (1995) Genomic structure of an attenuated quasi species of HIV-1 from a blood transfusion donor and recipients. Science 270: 988–991.
[27]
Kirchhoff F (2010) Immune evasion and counteraction of restriction factors by HIV-1 and other primate lentiviruses. Cell Host Microbe 8: 55–67.
[28]
Arhel NJ, Kirchhoff F (2009) Implications of Nef: host cell interactions in viral persistence and progression to AIDS. Current Topics in Microbiology and Immunology 339: 147–175.
[29]
Kirchhoff F, Schindler M, Specht A, Arhel N, Munch J (2008) Role of Nef in primate lentiviral immunopathogenesis. Cellular and Molecular Life Sciences 65: 2621–2636.
[30]
Foster JL, Garcia JV (2008) HIV-1 Nef: at the crossroads. Retrovirology 5: 84.
[31]
Fackler OT, Alcover A, Schwartz O (2007) Modulation of the immunological synapse: a key to HIV-1 pathogenesis? Nat Rev Immunol 7: 310–317.
[32]
Petit C, Buseyne F, Boccaccio C, Abastado JP, Heard JM, et al. (2001) Nef is required for efficient HIV-1 replication in cocultures of dendritic cells and lymphocytes. Virology 286: 225–236.
[33]
Fackler OT, Wolf D, Weber HO, Laffert B, D'Aloja P, et al. (2001) A natural variability in the proline-rich motif of Nef modulates HIV-1 replication in primary T cells. Curr Biol 11: 1294–1299.
[34]
Sol-Foulon N, Moris A, Nobile C, Boccaccio C, Engering A, et al. (2002) HIV-1 Nef-induced upregulation of DC-SIGN in dendritic cells promotes lymphocyte clustering and viral spread. Immunity 16: 145–155.
[35]
Messmer D, Bromberg J, Devgan G, Jacque JM, Granelli-Piperno A, et al. (2002) Human immunodeficiency virus type 1 Nef mediates activation of STAT3 in immature dendritic cells. AIDS Res Hum Retroviruses 18: 1043–1050.
[36]
Messmer D, Jacque JM, Santisteban C, Bristow C, Han SY, et al. (2002) Endogenously expressed nef uncouples cytokine and chemokine production from membrane phenotypic maturation in dendritic cells. J Immunol 169: 4172–4182.
[37]
Brenchley JM, Price DA, Schacker TW, Asher TE, Silvestri G, et al. (2006) Microbial translocation is a cause of systemic immune activation in chronic HIV infection. Nat Med 12: 1365–1371.
[38]
Piguet V, Schwartz O, Le Gall S, Trono D (1999) The downregulation of CD4 and MHC-I by primate lentiviruses: a paradigm for the modulation of cell surface receptors. Immunol Rev 168: 51–63.
[39]
Unutmaz D, KewalRamani VN, Marmon S, Littman DR (1999) Cytokine signals are sufficient for HIV-1 infection of resting human T lymphocytes. J Exp Med 189: 1735–1746.
[40]
Wang JH, Janas AM, Olson WJ, KewalRamani VN, Wu L (2007) CD4 coexpression regulates DC-SIGN-mediated transmission of human immunodeficiency virus type 1. Journal of Virology 81: 2497–2507.
[41]
Geyer M, Fackler OT, Peterlin BM (2001) Structure–function relationships in HIV-1 Nef. EMBO Rep 2: 580–585.
[42]
Smed-Sorensen A, Lore K, Vasudevan J, Louder MK, Andersson J, et al. (2005) Differential susceptibility to human immunodeficiency virus type 1 infection of myeloid and plasmacytoid dendritic cells. Journal of Virology 79: 8861–8869.
[43]
Ruiz A, Guatelli JC, Stephens EB (2010) The Vpu protein: new concepts in virus release and CD4 down-modulation. Curr HIV Res 8: 240–252.
[44]
Shen L, Siliciano RF (2008) Viral reservoirs, residual viremia, and the potential of highly active antiretroviral therapy to eradicate HIV infection. J Allergy Clin Immunol 122: 22–28.
Wu Y, Marsh JW (2001) Selective transcription and modulation of resting T cell activity by preintegrated HIV DNA. Science 293: 1503–1506.
[47]
Neri F, Giolo G, Potesta M, Petrini S, Doria M (2011) The HIV-1 Nef protein has a dual role in T cell receptor signaling in infected CD4+ T lymphocytes. Virology 410: 316–326.
Foskett SM, Ghose R, Tang DN, Lewis DE, Rice AP (2001) Antiapoptotic function of Cdk9 (TAK/P-TEFb) in U937 promonocytic cells. J Virol 75: 1220–1228.
[50]
Nobile C, Petit C, Moris A, Skrabal K, Abastado JP, et al. (2005) Covert human immunodeficiency virus replication in dendritic cells and in DC-SIGN-expressing cells promotes long-term transmission to lymphocytes. J Virol 79: 5386–5399.
[51]
Lore K, Smed-Sorensen A, Vasudevan J, Mascola JR, Koup RA (2005) Myeloid and plasmacytoid dendritic cells transfer HIV-1 preferentially to antigen-specific CD4+ T cells. J Exp Med 201: 2023–2033.
[52]
Boggiano C, Manel N, Littman DR (2007) Dendritic cell-mediated trans-enhancement of human immunodeficiency virus type 1 infectivity is independent of DC-SIGN. J Virol 81: 2519–2523.
[53]
Sanders RW, de Jong EC, Baldwin CE, Schuitemaker JH, Kapsenberg ML, et al. (2002) Differential transmission of human immunodeficiency virus type 1 by distinct subsets of effector dendritic cells. J Virol 76: 7812–7821.
[54]
Schindler M, Munch J, Kutsch O, Li H, Santiago ML, et al. (2006) Nef-mediated suppression of T cell activation was lost in a lentiviral lineage that gave rise to HIV-1. Cell 125: 1055–1067.
[55]
Schwartz O, Marechal V, Le Gall S, Lemonnier F, Heard JM (1996) Endocytosis of major histocompatibility complex class I molecules is induced by the HIV-1 Nef protein. Nat Med 2: 338–342.
[56]
Michel N, Allespach I, Venzke S, Fackler OT, Keppler OT (2005) The Nef protein of human immunodeficiency virus establishes superinfection immunity by a dual strategy to downregulate cell-surface CCR5 and CD4. Curr Biol 15: 714–723.
[57]
Swigut T, Shohdy N, Skowronski J (2001) Mechanism for down-regulation of CD28 by Nef. Embo J 20: 1593–1604.
[58]
Lama J, Ware CF (2000) Human immunodeficiency virus type 1 Nef mediates sustained membrane expression of tumor necrosis factor and the related cytokine LIGHT on activated T cells. J Virol 74: 9396–9402.
[59]
Stumptner-Cuvelette P, Morchoisne S, Dugast M, Le Gall S, Raposo G, et al. (2001) HIV-1 Nef impairs MHC class II antigen presentation and surface expression. Proc Natl Acad Sci U S A 98: 12144–12149.
[60]
Lundquist CA, Tobiume M, Zhou J, Unutmaz D, Aiken C (2002) Nef-mediated downregulation of CD4 enhances human immunodeficiency virus type 1 replication in primary T lymphocytes. J Virol 76: 4625–4633.
[61]
Lundquist CA, Zhou J, Aiken C (2004) Nef stimulates human immunodeficiency virus type 1 replication in primary T cells by enhancing virion-associated gp120 levels: coreceptor-dependent requirement for Nef in viral replication. J Virol 78: 6287–6296.
[62]
Aiken C, Trono D (1995) Nef stimulates human immunodeficiency virus type 1 proviral DNA synthesis. J Virol 69: 5048–5056.
[63]
Zhou J, Aiken C (2001) Nef enhances human immunodeficiency virus type 1 infectivity resulting from intervirion fusion: evidence supporting a role for Nef at the virion envelope. Journal of Virology 75: 5851–5859.
[64]
Muratori C, Cavallin LE, Kratzel K, Tinari A, De Milito A, et al. (2009) Massive secretion by T cells is caused by HIV Nef in infected cells and by Nef transfer to bystander cells. Cell Host Microbe 6: 218–230.
[65]
Manel N, Hogstad B, Wang Y, Levy DE, Unutmaz D, et al. (2010) A cryptic sensor for HIV-1 activates antiviral innate immunity in dendritic cells. Nature 467: 214–217.
[66]
Laguette N, Sobhian B, Casartelli N, Ringeard M, Chable-Bessia C, et al. (2011) SAMHD1 is the dendritic- and myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx. Nature 474: 654–657.
[67]
Hrecka K, Hao C, Gierszewska M, Swanson SK, Kesik-Brodacka M, et al. (2011) Vpx relieves inhibition of HIV-1 infection of macrophages mediated by the SAMHD1 protein. Nature 474: 658–661.
[68]
St Gelais C, Wu L (2011) SAMHD1: a new insight into HIV-1 restriction in myeloid cells. Retrovirology 8: 55.
[69]
Connor RI, Chen BK, Choe S, Landau NR (1995) Vpr is required for efficient replication of human immunodeficiency virus type-1 in mononuclear phagocytes. Virology 206: 935–944.
[70]
Englund G, Theodore TS, Freed EO, Engelman A, Martin MA (1995) Integration is required for productive infection of monocyte-derived macrophages by human immunodeficiency virus type 1. J Virol 69: 3216–3219.
[71]
Wu L, Bashirova AA, Martin TD, Villamide L, Mehlhop E, et al. (2002) Rhesus macaque dendritic cells efficiently transmit primate lentiviruses independently of DC-SIGN. Proc Natl Acad Sci U S A 99: 1568–1573.
[72]
Wu L, Martin TD, Carrington M, KewalRamani VN (2004) Raji B cells, misidentified as THP-1 cells, stimulate DC-SIGN-mediated HIV transmission. Virology 318: 17–23.