Purpose Dendritic cell (DC) vaccines have recently emerged as an innovative therapeutic option for glioblastoma patients. To identify novel surrogates of anti-tumor immune responsiveness, we studied the dynamic expression of activation and inhibitory markers on peripheral blood lymphocyte (PBL) subsets in glioblastoma patients treated with DC vaccination at UCLA. Experimental Design Pre-treatment and post-treatment PBL from 24 patients enrolled in two Phase I clinical trials of dendritic cell immunotherapy were stained and analyzed using flow cytometry. A univariate Cox proportional hazards model was utilized to investigate the association between continuous immune monitoring variables and survival. Finally, the immune monitoring variables were dichotomized and a recursive partitioning survival tree was built to obtain cut-off values predictive of survival. Results The change in regulatory T cell (CD3+CD4+CD25+CD127low) frequency in PBL was significantly associated with survival (p = 0.0228; hazard ratio = 3.623) after DC vaccination. Furthermore, the dynamic expression of the negative co-stimulatory molecule, CTLA-4, was also significantly associated with survival on CD3+CD4+ T cells (p = 0.0191; hazard ratio = 2.840) and CD3+CD8+ T cells (p = 0.0273; hazard ratio = 2.690), while that of activation markers (CD25, CD69) was not. Finally, a recursive partitioning tree algorithm was utilized to dichotomize the post/pre fold change immune monitoring variables. The resultant cut-off values from these immune monitoring variables could effectively segregate these patients into groups with significantly different overall survival curves. Conclusions Our results suggest that monitoring the change in regulatory T cell frequencies and dynamic expression of the negative co-stimulatory molecules on peripheral blood T cells, before and after DC vaccination, may predict survival. The cut-off point generated from these data can be utilized in future prospective immunotherapy trials to further evaluate its predictive validity.
Nieder C (2002) Treatment of newly diagnosed glioblastoma multiforme. J Clin Oncol 20: 3179–3180; author reply 3181–3172:
[3]
Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, et al. (2009) Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10: 459–466.
[4]
Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, et al. (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352: 987–996.
[5]
Surawicz TS, Davis F, Freels S, Laws ER Jr, Menck HR (1998) Brain tumor survival: results from the National Cancer Data Base. J Neurooncol 40: 151–160.
[6]
Cheever MA, Higano CS (2011) PROVENGE (Sipuleucel-T) in Prostate Cancer: The First FDA-Approved Therapeutic Cancer Vaccine. Clin Cancer Res 17: 3520–3526.
[7]
Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, et al. (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363: 711–723.
[8]
Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, et al. (2010) Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med 363: 411–422.
[9]
Traynor K (2011) Ipilimumab approved for metastatic melanoma. Am J Health Syst Pharm 68: 768.
[10]
Yang MY, Zetler PM, Prins RM, Khan-Farooqi H, Liau LM (2006) Immunotherapy for patients with malignant glioma: from theoretical principles to clinical applications. Expert Rev Neurother 6: 1481–1494.
[11]
De Vleeschouwer S, Fieuws S, Rutkowski S, Van Calenbergh F, Van Loon J, et al. (2008) Postoperative adjuvant dendritic cell-based immunotherapy in patients with relapsed glioblastoma multiforme. Clin Cancer Res 14: 3098–3104.
[12]
Heimberger AB, Sun W, Hussain SF, Dey M, Crutcher L, et al. (2008) Immunological responses in a patient with glioblastoma multiforme treated with sequential courses of temozolomide and immunotherapy: case study. Neuro Oncol 10: 98–103.
[13]
Kikuchi T, Akasaki Y, Abe T, Fukuda T, Saotome H, et al. (2004) Vaccination of glioma patients with fusions of dendritic and glioma cells and recombinant human interleukin 12. J Immunother 27: 452–459.
[14]
Liau LM, Prins RM, Kiertscher SM, Odesa SK, Kremen TJ, et al. (2005) Dendritic cell vaccination in glioblastoma patients induces systemic and intracranial T-cell responses modulated by the local central nervous system tumor microenvironment. Clin Cancer Res 11: 5515–5525.
[15]
Okada H, Kalinski P, Ueda R, Hoji A, Kohanbash G, et al. (2011) Induction of CD8+ T-cell responses against novel glioma-associated antigen peptides and clinical activity by vaccinations with {alpha}-type 1 polarized dendritic cells and polyinosinic-polycytidylic acid stabilized by lysine and carboxymethylcellulose in patients with recurrent malignant glioma. J Clin Oncol 29: 330–336.
[16]
Prins RM, Soto H, Konkankit V, Odesa SK, Eskin A, et al. (2011) Gene expression profile correlates with T-cell infiltration and relative survival in glioblastoma patients vaccinated with dendritic cell immunotherapy. Clin Cancer Res 17: 1603–1615.
[17]
Walker DG, Laherty R, Tomlinson FH, Chuah T, Schmidt C (2008) Results of a phase I dendritic cell vaccine trial for malignant astrocytoma: potential interaction with adjuvant chemotherapy. J Clin Neurosci 15: 114–121.
[18]
Wheeler CJ, Black KL, Liu G, Mazer M, Zhang XX, et al. (2008) Vaccination elicits correlated immune and clinical responses in glioblastoma multiforme patients. Cancer Res 68: 5955–5964.
[19]
Yamanaka R, Abe T, Yajima N, Tsuchiya N, Homma J, et al. (2003) Vaccination of recurrent glioma patients with tumour lysate-pulsed dendritic cells elicits immune responses: results of a clinical phase I/II trial. BrJCancer 89: 1172–1179.
[20]
Yamanaka R, Homma J, Yajima N, Tsuchiya N, Sano M, et al. (2005) Clinical Evaluation of Dendritic Cell Vaccination for Patients with Recurrent Glioma: Results of a Clinical Phase I/II Trial. Clin Cancer Res 11: 4160–4167.
[21]
Yu JS, Liu G, Ying H, Yong WH, Black KL, et al. (2004) Vaccination with tumor lysate-pulsed dendritic cells elicits antigen-specific, cytotoxic T-cells in patients with malignant glioma. Cancer Res 64: 4973–4979.
[22]
Yu JS, Wheeler CJ, Zeltzer PM, Ying H, Finger DN, et al. (2001) Vaccination of malignant glioma patients with peptide-pulsed dendritic cells elicits systemic cytotoxicity and intracranial T-cell infiltration. Cancer Res 61: 842–847.
[23]
Ardon H, Van Gool S, Lopes IS, Maes W, Sciot R, et al. (2010) Integration of autologous dendritic cell-based immunotherapy in the primary treatment for patients with newly diagnosed glioblastoma multiforme: a pilot study. J Neurooncol 99: 261–272.
[24]
Quezada SA, Peggs KS, Simpson TR, Allison JP (2011) Shifting the equilibrium in cancer immunoediting: from tumor tolerance to eradication. Immunol Rev 241: 104–118.
[25]
El Andaloussi A, Han Y, Lesniak MS (2006) Prolongation of survival following depletion of CD4+CD25+ regulatory T cells in mice with experimental brain tumors. J Neurosurg 105: 430–437.
[26]
El Andaloussi A, Lesniak MS (2006) An increase in CD4+CD25+FOXP3+ regulatory T cells in tumor-infiltrating lymphocytes of human glioblastoma multiforme. Neuro-oncology 8: 234–243.
[27]
El Andaloussi A, Lesniak MS (2007) CD4+ CD25+ FoxP3+ T-cell infiltration and heme oxygenase-1 expression correlate with tumor grade in human gliomas. Journal of neuro-oncology 83: 145–152.
[28]
Grauer OM, Nierkens S, Bennink E, Toonen LW, Boon L, et al. (2007) CD4+FoxP3+ regulatory T cells gradually accumulate in gliomas during tumor growth and efficiently suppress antiglioma immune responses in vivo. Int J Cancer 121: 95–105.
[29]
Grauer OM, Sutmuller RP, van Maren W, Jacobs JF, Bennink E, et al. (2008) Elimination of regulatory T cells is essential for an effective vaccination with tumor lysate-pulsed dendritic cells in a murine glioma model. Int J Cancer 122: 1794–1802.
[30]
Jackson C, Ruzevick J, Phallen J, Belcaid Z, Lim M (2011) Challenges in immunotherapy presented by the glioblastoma multiforme microenvironment. Clin Dev Immunol 2011: 732413. 732413 p.
[31]
Maes W, Rosas GG, Verbinnen B, Boon L, De Vleeschouwer S, et al. (2009) DC vaccination with anti-CD25 treatment leads to long-term immunity against experimental glioma. Neuro Oncol 11: 529–542.
[32]
Wainwright DA, Sengupta S, Han Y, Lesniak MS (2011) Thymus-derived rather than tumor-induced regulatory T cells predominate in brain tumors. Neuro-oncology.
Prins RM, Cloughesy TF, Liau LM (2008) Cytomegalovirus immunity after vaccination with autologous glioblastoma lysate. N Engl J Med 359: 539–541.
[35]
Lee AW, Truong T, Bickham K, Fonteneau JF, Larsson M, et al. (2002) A clinical grade cocktail of cytokines and PGE2 results in uniform maturation of human monocyte-derived dendritic cells: implications for immunotherapy. Vaccine 20: Suppl 4A8–A22.
[36]
Curtin JF, Candolfi M, Fakhouri TM, Liu C, Alden A, et al. (2008) Treg depletion inhibits efficacy of cancer immunotherapy: implications for clinical trials. PLoS One 3: e1983.
[37]
Fecci PE, Sweeney AE, Grossi PM, Nair SK, Learn CA, et al. (2006) Systemic anti-CD25 monoclonal antibody administration safely enhances immunity in murine glioma without eliminating regulatory T cells. Clin Cancer Res 12: 4294–4305.
[38]
Mitchell DA, Cui X, Schmittling RJ, Sanchez-Perez L, Snyder DJ, et al. (2011) Monoclonal antibody blockade of IL-2R{alpha} during lymphopenia selectively depletes regulatory T cells in mice and humans. Blood.
[39]
Ardon H, Verbinnen B, Maes W, Beez T, Van Gool S, et al. (2010) Technical advancement in regulatory T cell isolation and characterization using CD127 expression in patients with malignant glioma treated with autologous dendritic cell vaccination. J Immunol Methods 352: 169–173.
[40]
Liu W, Putnam AL, Xu-Yu Z, Szot GL, Lee MR, et al. (2006) CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells. J Exp Med 203: 1701–1711.
[41]
Fecci PE, Ochiai H, Mitchell DA, Grossi PM, Sweeney AE, et al. (2007) Systemic CTLA-4 blockade ameliorates glioma-induced changes to the CD4+ T cell compartment without affecting regulatory T-cell function. Clin Cancer Res 13: 2158–2167.
[42]
Curran MA, Kim M, Montalvo W, Al-Shamkhani A, Allison JP (2011) Combination CTLA-4 Blockade and 4-1BB Activation Enhances Tumor Rejection by Increasing T-Cell Infiltration, Proliferation, and Cytokine Production. PLoS One 6: e19499.
[43]
Pedicord VA, Montalvo W, Leiner IM, Allison JP (2011) Single dose of anti-CTLA-4 enhances CD8+ T-cell memory formation, function, and maintenance. Proc Natl Acad Sci U S A 108: 266–271.
[44]
Yuan J, Ginsberg B, Page D, Li Y, Rasalan T, et al. (2011) CTLA-4 blockade increases antigen-specific CD8(+) T cells in prevaccinated patients with melanoma: three cases. Cancer Immunol Immunother.
[45]
Peggs KS, Quezada SA, Chambers CA, Korman AJ, Allison JP (2009) Blockade of CTLA-4 on both effector and regulatory T cell compartments contributes to the antitumor activity of anti-CTLA-4 antibodies. J Exp Med 206: 1717–1725.
[46]
Quezada SA, Peggs KS, Simpson TR, Shen Y, Littman DR, et al. (2008) Limited tumor infiltration by activated T effector cells restricts the therapeutic activity of regulatory T cell depletion against established melanoma. J Exp Med 205: 2125–2138.