全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

Enhanced Auditory Brainstem Response and Parental Bonding Style in Children with Gastrointestinal Symptoms

DOI: 10.1371/journal.pone.0032913

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background The electrophysiological properties of the brain and influence of parental bonding in childhood irritable bowel syndrome (IBS) are unclear. We hypothesized that children with chronic gastrointestinal (GI) symptoms like IBS may show exaggerated brainstem auditory evoked potential (BAEP) responses and receive more inadequate parental bonding. Methodology/Principal Findings Children aged seven and their mothers (141 pairs) participated. BAEP was measured by summation of 1,000 waves of the electroencephalogram triggered by 75 dB click sounds. The mothers completed their Children's Somatization Inventory (CSI) and Parental Bonding Instrument (PBI). CSI results revealed 66 (42%) children without GI symptoms (controls) and 75 (58%) children with one or more GI symptoms (GI group). The III wave in the GI group (median 4.10 interquartile range [3.95–4.24] ms right, 4.04 [3.90–4.18] ms left) had a significantly shorter peak latency than controls (4.18 [4.06–4.34] ms right, p = 0.032, 4.13 [4.02–4.24] ms left, p = 0.018). The female GI group showed a significantly shorter peak latency of the III wave (4.00 [3.90–4.18] ms) than controls (4.18 [3.97–4.31] ms, p = 0.034) in the right side. BAEP in the male GI group did not significantly differ from that in controls. GI scores showed a significant correlation with the peak latency of the III wave in the left side (rho = ?0.192, p = 0.025). The maternal care PBI scores in the GI group (29 [26]–[33]) were significantly lower than controls (31 [28.5–33], p = 0.010), while the maternal over-protection PBI scores were significantly higher in the GI group (16 [12]–[17]) than controls (13 [10.5–16], p = 0.024). Multiple regression analysis in females also supported these findings. Conclusions It is suggested that children with chronic GI symptoms have exaggerated brainstem responses to environmental stimuli and inadequate parental behaviors aggravate these symptoms.

References

[1]  Chang L, Toner BB, Fukudo S, Guthrie E, Locke GR, et al. (2006) Gender, age, society, culture, and the patient's perspective in the functional gastrointestinal disorders. Gastroenterology 130: 1435–1446.
[2]  Longstreth GF, Thompson WG, Chey WD, Houghton LA, Mearin F, et al. (2006) Functional bowel disorders. Gastroenterology 130: 1480–1491.
[3]  Plunkett A, Beattie RM (2005) Recurrent abdominal pain in childhood. J Royal Soc Med 98: 101–106.
[4]  Vlieger AM, Van den Berg MM, Menko-Frankenhuis C, Bongers ME, Tromp E, et al. (2010) No change in rectal sensitivity after gut-directed hypnotherapy in children with functional abdominal pain or Irritable bowel syndrome. Am J Gastroenterol 105: 213–218.
[5]  Campo JV, Bridge J, Ehmann M, Altman S, Lucas A, et al. (2004) Recurrent abdominal pain, anxiety, and depression in primary care. Pediatrics 113: 817–824.
[6]  Howell S, Poulton R, Talley NJ (2005) The natural history of childhood abdominal pain and its association with adult irritable bowel syndrome: birth-cohort study. Am J Gastroenterol 100: 2071–2078.
[7]  Di Lorenzo C, Youssef NN, Singudsson L, Scharff L, Griffiths J, et al. (2001) Visceral hyperalgesia in children with functional abdominal pain. J Pediatr 139: 838–843.
[8]  Walker LS, Guite JW, Duke M, Barnard JA, Greene JW (1998) Recurrent abdominal pain: a potential precursor of irritable bowel syndrome in adolescents and young adults. J Pediatr 132: 1010–1015.
[9]  Zuckerman B, Stevenson J, Bailey V (1987) Stomachaches and headaches in a community sample of preschool children. Pediatrics 79: 677–682.
[10]  Whitehead WE, Holtkotter B, Enck P, Hoelzl R, Holmes KD, et al. (1990) Tolerance for rectosigmoid distention in irritable bowel syndrome. Gastroenterology 98: 1187–1192.
[11]  Munakata J, Naliboff B, Harraf F, Kodner A, Lembo T, et al. (1997) Repetitive sigmoid stimulation induces rectal hyperalgesia in patients with irritable bowel syndrome. Gstroenterology 112: 55–63.
[12]  Fature C, Wieckowska A (2007) Somatic referral of visceral sensations and rectal sensory threshold for pain in children with functional gastrointestinal disorders. J Pediatr 150: 66–71.
[13]  Mayer EA, Naliboff BD, Craig DB (2006) Neuroimaging of the brain-gut axis: from basic understanding to treatment of functional GI disorders. Gastroenterology 131: 1925–1942.
[14]  Fukudo S, Nomura T, Muranaka M, Taguchi F (1993) Brain-gut response to stress and cholinergic stimulation in irritable bowel syndrome. A preliminary study. J Clin Gastroenterol 17: 133–141.
[15]  Naliboff BD, Berman S, Suyenobu B, Labus JS, Chang L, et al. (2006) Longitudinal change in perceptual and brain activation response to visceral stimuli in irritable bowel syndrome patients. Gastroenterology 131: 352–365.
[16]  Berman SM, Naloboff BD, Suyenobu JL, Labus JS, Stains J, et al. (2008) Reduced brainstem inhibition during anticipated pelvic visceral pain correlates with enhanced brain response to visceral stimulus in women with irritable bowel syndrome. J Neurosci 28: 349–359.
[17]  Dickhaus B, Mayer EA, Firooz N, Stains J, Conde F, et al. (2003) Irritable bowel syndrome patients show enhanced modulation of visceral perception by auditory stress. Gastroenterology 98: 135–143.
[18]  Berman SM, Naliboff BD, Chang L, Fitzgerald L, Antolin T, et al. (2002) Camplone A, Mayer EA. Enhanced preattentive central nervous system reactivity in Irritable bowel Syndrome. Am J Gastroenterol 97: 2791–2797.
[19]  Ambrosini A, De Pasqua V, Afra J, Sandor PS, Schoenen J (2001) Reduced gating of middle-latency auditory evoked potentials (P50) in migraine patients: Another indication of abnormal sensory processing? Neurosci Lett 306: 132–134.
[20]  Murata K, Sakamoto M, Nakai K, Weihe P, Dakeishi M, et al. (2004) Effects of methylmercury on neurodevelopment in Japanese children in relation to the Madeiran study. Int Arch Occup Environ Health 77: 571–579.
[21]  Ovtscharoffjr W, Helmeke C, Braun K (2006) Lack of parental care affects synaptic development in the anterior cinglate cortex. Brain Res 1116: 58–63.
[22]  Robinson JO, Alverez JH, Dodge JA (1990) Life events and family history in children with recurrent abdominal pain. J Psychosom Res 34: 171–181.
[23]  Walker LS, Garber J, Van Slyke DA, Greene JW (1995) Long-term health outcomes in patients with recurrent abdominal pain. J Pediatric Psychol 20: 233–245.
[24]  Hodges K, Kline J, Barberoand G, Woodruff C (1985) Anxiety in children with recurrent abdominal pain and their parents. Psychosomatics 26: 859–866.
[25]  Levy RL, Jones KR, Whitehead WE, Feld SI, Talley NJ, et al. (2001) Irritable bowel syndrome in twins: Heredity and social learning both contribute to etiology. Gastroenterology 2001; 121: 799–804.
[26]  Janssens KM, Oldehinkel AM, Rosmalen GM (2009) Parental overprotection predicts the development of functional somatic symptoms in young adolescents. J Pediatr 154: 918–923.
[27]  Weydert JA, Ball TM, Davis MF (2003) Systematic review of treatment for recurrent abdominal pain. Pediatrics 111: 1–11.
[28]  Feldman R, Gordon I, Schneiderman I, Weisman O, Zagoory-Sharon O (2010) Natural variations in maternal and paternal care are associated with systematic changes in oxytocin following parent-infant contact. Psychoneuroendocrinology 35: 1133–1141.
[29]  Enns MW, Cox BJ, Clara l (2002) Parental bonding and adult psychopathology: results from the U.S. National comorbidity survey. Psychol Med 32: 997–1008.
[30]  Sato T, Uehara T, Narita T, Sakado K, Fujii Y (2000) Parental bonding and personality in relation to lifetime history of depression. Psychiat Clin Neurosci 54: 121–130.
[31]  Suzuki K, Nakai K, Sugawara T, Nakamura T, Ohba T, et al. (2010) Neurobehavioral effects of prenatal exposure to methylmercury and PCBs, and seafood intake: Neonatal behavioral assessment scale results of Tohoku study of child development. Environ Res 110: 699–704.
[32]  Watanabe S, Hattori T, Kanazawa M, Kano M, Fukudo S (2007) Role of histaminergic neurons in hypnotic modulation of brain processing of visceral perception. Neurogastroenterol Motil 19: 831–838.
[33]  Stockard JJ, Stockard JE, Sharbrough FW (1986) Brainstem auditory evoked potentials in neurology: methodology, interpretation, and clinical application. In: Aminoff MJ, editor. Electrodiagnosis in Clinical Neurology, 2nd edition. Churchill Livingstone, New York: pp. 467–503.
[34]  Meesters C, Muris P, Ghys A, Reumerman T, Rooijmans M (2003) The Children Somatization Inventory: further evidence for its reliability and validity in a pediatric and community sample of Dutch children and adolescents. J Pediatr Psychol 28: 413–422.
[35]  Vila M, Kramer T, Hickey N, Dattani M, Jefferis H, et al. (2009) Assessment of somatic symptoms in British secondary school children using the children's somatization inventory. J Pediatr Psychol 34: 989–998.
[36]  Parker G, Tupling H, Brown LB (1979) A parental bonding instrument. Br J Med Psychol 52: 1–10.
[37]  Kitamura T, Suzuki T (1993) A validation study of the parental bonding instrument in Japanese population. Jpn J Psychiatry Neurol 47: 29–36.
[38]  Rosenthall U, Bjorkman G, PeSersen K, Kall A (1985) Brainstem auditory evoked potentials in different age groups. Electroencephalogr Clin Neurophysiol 62: 426–430.
[39]  Kable JA, Coles CD, Lynch ME, Carroll J (2009) The impact of maternal smoking on fast auditory brainstem responses. Neurotoxicol Teratol 31: 216–224.
[40]  Wang NY, Su JF, Dong HQ, Jia JP, Han DM (2005) Hearing impairment in patients with mild cognitive impairment and Alzheimers disease. Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi 40: 279–282.
[41]  Valentino RJ, Pavcovich LA, Hirata H (1995) Evidence for corticotropin-releasing hormone projections from Barrington's nucleus to the periaqueductal gray region and dorsal motor nucleus of vagus in the rat. J Comp Neurol 363: 402–422.
[42]  Valentino RJ, Chen S, Zhu Y, Aston-Jones G (1996) Evidence for divergent projections to the brain noradrenergic system and the spinal parasympathetic system from Barrington's nucleus. Brain Res 732: 1–15.
[43]  Gorski RA (2000) Sex differentiation of the nervous system. In: Kandel ER, Schwartz JH, Jessell TM, editors. Principles of Neural Science, fourth edition. pp. 1131–1148. McGraw-Hill, New York.
[44]  Nicolson NA (2004) Childhood parental loss and cortisol levels in adult men. Psychoneuroendocrinology 29: 1012–1018.
[45]  Luecken LJ, Appelhans BM (2006) Early parental loss and salivary cortisol in young adulthood: the moderating role of family environment. Dev Psychopathol 18: 295–308.
[46]  Tafet GE, Smolovich J (2004) Psychoneuroendocrinological studies on chronic stress and depression. Ann N Y Acad Sci 1032: 276–278.
[47]  Belmaker RH, Agam G (2008) Major depressive disorder. N Engl J Med 358: 55–68.
[48]  Fukudo S, Nomura T, Hongo M (1998) Impact of corticotropin-releasing hormone on gastrointestinal motility in normal subjects and patients with irritable bowel syndrome. Gut 42: 845–849.
[49]  Videlock EJ, Adeyemo M, Licudine A, Hirano M, Ohning G, et al. (2009) Childhood trauma is associated with hypothalamic-pituitary-adrenal axis responsiveness in irritable bowel syndrome. Gastroenterology 137: 1954–1962.
[50]  Hattori T, Watanabe S, Kano M, Kanazawa M, Fukudo S (2010) Differential responding of autonomic function to histamine H1 antagonism in irritable bowel syndrome. Neurogastroenterol Motil 22: 1284–1291.
[51]  Creed F, Levy RL, Bradley LA, Francisconi C, Drossman DA, et al. (2006) Psychosocial aspects of functional gastrointestinal disorders. In: Drossman DA, Corazziari E, Delvaux M, Spiller RC, Talley NJ, Thompson WG, Whitehead WE, editors. Rome III: the Functional Gastrointestinal Disorders, Third Edition. pp. 295–368. Degnon Associates, McLean, Virginia.
[52]  Drossman DA, Leserman J, Nachman G, Li ZM, Gluck H, et al. (1990) Sexual and physical abuse in women with functional or organic gastrointestinal disorders. Ann Intern Med 113: 828–833.
[53]  Blandon AY, Calkins SD, Keane SP, Brien MO (2008) Individual differences in trajectories of emotion regulation processes. Dev Psychol 44: 1110–1123.
[54]  Shipman KL, Zeman J (2001) Socialization of children's emotion regulation in mother-child dyads: a developmental psychopathology perspective. Dev Psychopathol 13: 317–336.
[55]  Mayer EA, Craske M, Naliboff BD (2001) Depression, anxiety, and the gastrointestinal system. J Clin Psychiatry 62: 28–36.
[56]  Dufton LM (2009) Anxiety and somatic complaints in children with recurrent abdominal pain and anxiety disorders. J Pediatr Psychol 34: 176–186.
[57]  Cruz DA, Lovallo E, Stockton S, Rasband M, Lewis DA (2009) Postnatal development of synaptic structure proteins in pyramidal neuron axon initial segments in monkey prefrontal cortex. J Comp Neurol 514: 353–367.
[58]  Castilloux J, Noble A, Fayre C (2008) Is visceral hypersensitivity correlated with symptom severity in children with functional gastrointestinal disorders? Pediat Gastroenterol Nut 46: 272–278.
[59]  Van der Veek PP, Van Rood YR, Masclee AA (2008) Symptom severity but not psychopathology predicts visceral hypersensitivity in irritable bowel syndrome. Clin Gastroenterol Hepatol 6: 321–328.
[60]  Durno CA, Gallinger S (2006) Genetic predisposition to colorectal cancer: new pieces in the pediatric puzzle. J Pediatr Gastroenterol Nutr 43: 5–15.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133