全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

A Novel High-Content Flow Cytometric Method for Assessing the Viability and Damage of Rat Retinal Ganglion Cells

DOI: 10.1371/journal.pone.0033983

Full-Text   Cite this paper   Add to My Lib

Abstract:

Purpose The aim of the study was to develop a high-content flow cytometric method for assessing the viability and damage of small, medium, and large retinal ganglion cells (RGCs) in N-methyl-D-aspartic acid (NMDA)-injury model. Methods/Results Retinal toxicity was induced in rats by intravitreal injection of NMDA and RGCs were retrogradely labeled with Fluoro-Gold (FG). Seven days post-NMDA injection, flatmount and flow cytometric methods were used to evaluate RGCs. In addition, the RGC area diameter (D(a)) obtained from retinal flatmount imaging were plotted versus apparent volume diameter (D(v)) obtained from flow cytometry for the same cumulative cell number (sequentially from small to large RGCs) percentile (Q) to establish their relationship for accurately determining RGC sizes. Good correlation (r = 0.9718) was found between D(a) and apparent D(v). Both flatmount and flow cytometric analyses of RGCs showed that 40 mM NMDA significantly reduced the numbers of small and medium RGCs but not large RGCs. Additionally, flow cytometry showed that the geometric means of FG and thy-1 intensities in three types of RGCs decreased to 90.96±2.24% (P<0.05) and 91.78±1.89% (P>0.05) for small, 69.62±2.11% (P<0.01) and 69.07±2.98% (P<0.01) for medium, and 69.68±6.48% (P<0.05) and 69.91±6.23% (P<0.05) for large as compared with the normal RGCs. Conclusion The established flow cytometric method provides high-content analysis for differential evaluation of RGC number and status and should be useful for the evaluation of various models of optic nerve injury and the effects of potential neuroprotective agents.

References

[1]  Pang IH, Clark AF (2007) Rodent models for glaucoma retinopathy and optic neuropathy. J Glaucoma 16: 483–505.
[2]  Selles-Navarro I, Villegas-Perez MP, Salvador-Silva M, Ruiz-Gomez JM, Vidal-Sanz M (1996) Retinal ganglion cell death after different transient periods of pressure-induced ischemia and survival intervals. A quantitative in vivo study. Invest Ophthalmol Vis Sci 37: 2002–2014.
[3]  Vidal-Sanz M, Villegas-Perez MP, Bray GM, Aguayo AJ (1988) Persistent retrograde labeling of adult rat retinal ganglion cells with the carbocyanine dye diI. Exp Neurol 102: 92–101.
[4]  Dreher B, Sefton AJ, Ni SY, Nisbett G (1985) The morphology, number, distribution and central projections of Class I retinal ganglion cells in albino and hooded rats. Brain Behav Evol 26: 10–48.
[5]  Danias J, Shen F, Goldblum D, Chen B, Ramos-Esteban J, et al. (2002) Cytoarchitecture of the retinal ganglion cells in the rat. Invest Ophthalmol Vis Sci 43: 587–594.
[6]  Ota T, Hara H, Miyawaki N (2002) Brain-derived neurotrophic factor inhibits changes in soma-size of retinal ganglion cells following optic nerve axotomy in rats. J Ocul Pharmacol Ther 18: 241–249.
[7]  Porciatti V, Saleh M, Nagaraju M (2007) The pattern electroretinogram as a tool to monitor progressive retinal ganglion cell dysfunction in the DBA/2J mouse model of glaucoma. Invest Ophthalmol Vis Sci 48: 745–751.
[8]  Fukuda Y (1977) A three-group classification of rat retinal ganglion cells: histological and physiological studies. Brain Res 119: 327–334.
[9]  Vecino E, Garcia-Crespo D, Garcia M, Martinez-Millan L, Sharma SC, et al. (2002) Rat retinal ganglion cells co-express brain derived neurotrophic factor (BDNF) and its receptor TrkB. Vision Res 42: 151–157.
[10]  Edwards BS, Oprea T, Prossnitz ER, Sklar LA (2004) Flow cytometry for high-throughput, high-content screening. Curr Opin Chem Biol 8: 392–398.
[11]  Kashiwagi F, Kashiwagi K, Iizuka Y, Tsukahara S (2000) Effects of brain-derived neurotrophic factor and neurotrophin-4 on isolated cultured retinal ganglion cells: evaluation by flow cytometry. Invest Ophthalmol Vis Sci 41: 2373–2377.
[12]  Huang W, Fileta J, Guo Y, Grosskreutz CL (2006) Downregulation of Thy1 in retinal ganglion cells in experimental glaucoma. Curr Eye Res 31: 265–271.
[13]  Schlamp CL, Johnson EC, Li Y, Morrison JC, Nickells RW (2001) Changes in Thy1 gene expression associated with damaged retinal ganglion cells. Mol Vis 7: 192–201.
[14]  Dibas A, Oku H, Fukuhara M, Kurimoto T, Ikeda T, Patil RV, Sharif NA, Yorio T (2010) Changes in ocular aquaporin expression following optic nerve crush. Mol Vis 16: 330–340.
[15]  Nash MS, Osborne NN (1999) Assessment of Thy-1 mRNA levels as an index of retinal ganglion cell damage. Invest Ophthalmol Vis Sci 40: 1293–1298.
[16]  Chidlow G, Osborne NN (2003) Rat retinal ganglion cell loss caused by kainate, NMDA and ischemia correlates with a reduction in mRNA and protein of Thy-1 and neurofilament light. Brain Res 963: 298–306.
[17]  Reichstein D, Ren L, Filippopoulos T, Mittag T, Danias J (2007) Apoptotic retinal ganglion cell death in the DBA/2 mouse model of glaucoma. Exp Eye Res 84: 13–21.
[18]  Lam TT, Abler AS, Kwong JM, Tso MO (1999) N-methyl-D-aspartate (NMDA)–induced apoptosis in rat retina. Invest Ophthalmol Vis Sci 40: 2391–2397.
[19]  Nakazawa T, Takahashi H, Nishijima K, Shimura M, Fuse N, et al. (2007) Pitavastatin prevents NMDA-induced retinal ganglion cell death by suppressing leukocyte recruitment. J Neurochem 100: 1018–1031.
[20]  Peng PH, Ko ML, Chen CF (2008) Epigallocatechin-3-gallate reduces retinal ischemia/reperfusion injury by attenuating neuronal nitric oxide synthase expression and activity. Exp Eye Res 86: 637–646.
[21]  Grieshaber P, Lagreze WA, Noack C, Boehringer D, Biermann J (2010) Staining of fluorogold-prelabeled retinal ganglion cells with calcein-AM: A new method for assessing cell vitality. J Neurosci Methods 192: 233–239.
[22]  Yang J, Tezel G, Patil RV, Wax MB (2000) Flow cytometry for quantification of retrogradely labeled retinal ganglion cells by Fluoro-Gold. Curr Eye Res 21: 981–985.
[23]  Hulspas R, O'Gorman MR, Wood BL, Gratama JW, Sutherland DR (2009) Considerations for the control of background fluorescence in clinical flow cytometry. Cytometry B Clin Cytom 76: 355–364.
[24]  Murata H, Aihara M, Chen YN, Ota T, Numaga J, et al. (2008) Imaging mouse retinal ganglion cells and their loss in vivo by a fundus camera in the normal and ischemia-reperfusion model. Invest Ophthalmol Vis Sci 49: 5546–5552.
[25]  Jakobs TC, Libby RT, Ben Y, John SW, Masland RH (2005) Retinal ganglion cell degeneration is topological but not cell type specific in DBA/2J mice. J Cell Biol 171: 313–325.
[26]  Schlamp CL, Li Y, Dietz JA, Janssen KT, Nickells RW (2006) Progressive ganglion cell loss and optic nerve degeneration in DBA/2J mice is variable and asymmetric. BMC Neurosci 7: 66.
[27]  Kwong JM, Lam TT, Caprioli J (2003) Hyperthermic pre-conditioning protects retinal neurons from N-methyl-D-aspartate (NMDA)-induced apoptosis in rat. Brain Res 970: 119–130.
[28]  Feng G, Mellor RH, Bernstein M, Keller-Peck C, Nguyen QT, et al. (2000) Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 28: 41–51.
[29]  Ino-Ue M, Zhang L, Naka H, Kuriyama H, Yamamoto M (2000) Polyol metabolism of retrograde axonal transport in diabetic rat large optic nerve fiber. Invest Ophthalmol Vis Sci 41: 4055–4058.
[30]  Higashide T, Kawaguchi I, Ohkubo S, Takeda H, Sugiyama K (2006) In vivo imaging and counting of rat retinal ganglion cells using a scanning laser ophthalmoscope. Invest Ophthalmol Vis Sci 47: 2943–2950.
[31]  Morgan JE (2002) Retinal ganglion cell shrinkage in glaucoma. J Glaucoma 11: 365–370.
[32]  Mey J, Thanos S (1993) Intravitreal injections of neurotrophic factors support the survival of axotomized retinal ganglion cells in adult rats in vivo. Brain Res 602: 304–317.
[33]  Quigley HA, Sanchez RM, Dunkelberger GR, L'Hernault NL, Baginski TA (1987) Chronic glaucoma selectively damages large optic nerve fibers. Invest Ophthalmol Vis Sci 28: 913–920.
[34]  Quigley HA, Dunkelberger GR, Green WR (1988) Chronic human glaucoma causing selectively greater loss of large optic nerve fibers. Ophthalmology 95: 357–363.
[35]  Glovinsky Y, Quigley HA, Dunkelberger GR (1991) Retinal ganglion cell loss is size dependent in experimental glaucoma. Invest Ophthalmol Vis Sci 32: 484–491.
[36]  Porciatti V, Di Bartolo E, Nardi N, Fiorentini A (1997) Responses to chromatic and luminance contrast in glaucoma: a psychophysical and electrophysiological study. Vision Res 37: 1975–1987.
[37]  Ansari EA, Morgan JE, Snowden RJ (2002) Psychophysical characterisation of early functional loss in glaucoma and ocular hypertension. Br J Ophthalmol 86: 1131–1135.
[38]  Fortune B, Bui BV, Morrison JC, Johnson EC, Dong J, et al. (2004) Selective ganglion cell functional loss in rats with experimental glaucoma. Invest Ophthalmol Vis Sci 45: 1854–1862.
[39]  Ventura LM, Sorokac N, De Los Santos R, Feuer WJ, Porciatti V (2006) The relationship between retinal ganglion cell function and retinal nerve fiber thickness in early glaucoma. Invest Ophthalmol Vis Sci 47: 3904–3911.
[40]  Chidlow G, Wood JP, Casson RJ (2007) Pharmacological neuroprotection for glaucoma. Drugs 67: 725–759.
[41]  Vrabec JP, Levin LA (2007) The neurobiology of cell death in glaucoma. Eye (Lond) 21: Suppl 1S11–14.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133