Background Heart failure (HF) is a complex clinical syndrome characterized by impaired cardiac function and poor exercise tolerance. Enhanced inflammation is associated with worsening outcomes in HF patients and may play a direct role in disease progression. Interleukin-1β (IL-1β) is a pro-inflammatory cytokine that becomes chronically elevated in HF and exerts putative negative inotropic effects. Methods and Results We developed a model of IL-1β-induced left ventricular (LV) dysfunction in healthy mice that exhibited a 32% reduction in LV fractional shortening (P<0.001) and a 76% reduction in isoproterenol response (P<0.01) at 4 hours following a single dose of IL-1β 3 mcg/kg. This phenotype was reproducible in mice injected with plasma from HF patients and fully preventable by pretreatment with IL-1 receptor antagonist (anakinra). This led to the design and conduct of a pilot clinical to test the effect of anakinra on cardiopulmonary exercise performance in patients with HF and evidence of elevated inflammatory signaling (n = 7). The median peak oxygen consumption (VO2) improved from 12.3 [10.0, 15.2] to 15.1 [13.7, 19.3] mL·kg–1·min–1 (P = 0.016 vs. baseline) and median ventilator efficiency (VE/VCO2 slope) improved from 28.1 [22.8, 31.7] to 24.9 [22.9, 28.3] (P = 0.031 vs. baseline). Conclusions These findings suggest that IL-1β activity contributes to poor exercise tolerance in patients with systolic HF and identifies IL-1β blockade as a novel strategy for pharmacologic intervention. Trial Registration ClinicalTrials.gov NCT01300650
References
[1]
Jessup M, Abraham WT, Casey DE, Feldman AM, Francis GS, et al. (2009) 2009 focused update: ACCF/AHA Guidelines for the Diagnosis and Management of Heart Failure in Adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines: developed in collaboration with the International Society for Heart and Lung Transplantation. Circulation 119: 1977–2016.
[2]
Roger VL, Go AS, Lloyd-Jones DM, Adams RJ, Berry JD, et al. (2011) Heart disease and stroke statistics–2011 update: a report from the American Heart Association. Circulation 123: e18–e209.
[3]
Deswal A, Petersen NJ, Feldman AM, Young JB, White BG, et al. (2001) Cytokines and cytokine receptors in advanced heart failure: an analysis of the cytokine database from the Vesnarinone trial (VEST). Circulation 103: 2055–2059.
[4]
Araújo JP, Louren?o P, Azevedo A, Fri?es F, Rocha-Gon?alves F, et al. (2009) Prognostic value of high-sensitivity C-reactive protein in heart failure: a systematic review. J Card Fail 15: 256–266.
[5]
Long CS (2001) The role of interleukin-1 in the failing heart. Heart Fail Rev 6: 81–94.
[6]
Dinarello CA (2009) Immunological and inflammatory functions of the interleukin-1 family. Annu Rev Immunol 27: 519–550.
[7]
Bujak M, Frangogiannis NG (2009) The role of IL-1 in the pathogenesis of heart disease. Arch Immunol Ther Exp (Warsz) 57: 165–176.
[8]
Abbate A, Salloum FN, Vecile E, Das A, Hoke NN, et al. (2008) Anakinra, a recombinant human interleukin-1 receptor antagonist, inhibits apoptosis in experimental acute myocardial infarction. Circulation 117: 2670–2683.
[9]
Van Tassell BW, Varma A, Salloum FN, Das A, Seropian IM, et al. (2010) Interleukin-1 trap attenuates cardiac remodeling after experimental acute myocardial infarction in mice. J Cardiovasc Pharmacol 55: 117–122.
[10]
Abbate A, Salloum FN, Van Tassell BW, Vecile E, Toldo S, et al. (2011) Alterations in the Interleukin-1/Interleukin-1 receptor antagonist balance modulate cardiac remodeling following acute myocardial infarction in the mouse. PLoS ONE 6: e27923.
[11]
Abbate A, Van Tassell BW, Seropian IM, Toldo S, Robati R, et al. (2010) Interleukin-1beta modulation using a genetically engineered antibody prevents adverse cardiac remodelling following acute myocardial infarction in the mouse. Eur J Heart Fail 12: 319–322.
[12]
Bujak M, Dobaczewski M, Chatila K, Mendoza LH, Li N, et al. (2008) Interleukin-1 receptor type I signaling critically regulates infarct healing and cardiac remodeling. Am J Pathol 173: 57–67.
[13]
Liu SJ, Zhou W, Kennedy RH (1999) Suppression of beta-adrenergic responsiveness of L-type Ca2+ current by IL-1beta in rat ventricular myocytes. Am J Physiol 276: H141–H148.
[14]
Gulick T, Chung MK, Pieper SJ, Lange LG, Schreiner GF (1989) Interleukin 1 and tumor necrosis factor inhibit cardiac myocyte β-adrenergic responsiveness. Proc Natl Acad Sci U S A 86: 6753–6757.
[15]
Schiller NB, Shah PM, Crawford M, DeMaria A, Devereux R, et al. (1989) Recommendations for quantitation of the left ventricle by two-dimensional echocardiography. American Society of Echocardiography Committee on Standards, Subcommittee on Quantitation of Two-Dimensional Echocardiograms. J Am Soc Echocardiogr 2: 358–367.
[16]
Syed F, Diwan A, Hahn HS (2005) Murine echocardiography: a practical approach for phenotyping genetically manipulated and surgically modeled mice. J Am Soc Echocardiogr 18: 982–990.
[17]
Hlatky MA, Boineau RE, Higginbotham MB, Lee KL, Mark DB, et al. (1989) A brief self-administered questionnaire to determine functional capacity (the Duke Activity Status Index). Am J Cardiol 64: 651–654.
[18]
Arena R, Humphrey R, Peberdy MA, Madigan M (2003) Predicting peak oxygen consumption during a conservative ramping protocol: implications for the heart failure population. J Cardiopulm Rehabil 23: 183–189.
[19]
Baba R, Nagashima M, Goto M, Nagano Y, Yokota M, et al. (1996) Oxygen intake efficiency slope: a new index of cardiorespiratory functional reserve derived from the relationship between oxygen consumption and minute ventilation during incremental exercise. Nagoya J Med Sci 59: 55–62.
[20]
Gibbons RJ, Balady GJ, Bricker JT, Chaitman BR, Fletcher GF, et al. (2002) ACC/AHA 2002 guideline update for exercise testing: summary article. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee to Update the 1997 Exercise Testing Guidelines). J Am Coll Cardiol 40: 1531–1540.
[21]
Tei C, Ling LH, Hodge DO, Bailey KR, Oh JK (1995) New index of combined systolic and diastolic myocardial performance: a simple and reproducible measure of cardiac function–a study in normals and dilated cardiomyopathy. J Cardiol 26: 357–366.
[22]
Broberg CS, Pantely GA, Barber BJ, Mack GK, Lee K, et al. (2003) Validation of the myocardial performance index by echocardiography in mice: a noninvasive measure of left ventricular function. J Am Soc Echocardiogr 16: 814–823.
[23]
Ikonomidis I, Lekakis JP, Nikolaou M, Paraskevaidis I, Andreadou I, et al. (2008) Inhibition of interleukin-1 by anakinra improves vascular and left ventricular function in patients with rheumatoid arthritis. Circulation 117: 2662–2669.
[24]
Abbate A, Kontos MC, Grizzard JD, Biondi-Zoccai GG, Van Tassell BW, et al. (2010) Interleukin-1 blockade with anakinra to prevent adverse cardiac remodeling after acute myocardial infarction (Virginia Commonwealth University Anakinra Remodeling Trial [VCU-ART] Pilot study). Am J Cardiol 105: 1371–1377.
[25]
LeGal YM, Morrissey LL (1990) Methylprednisolone interventions in myocardial infarction: a controversial subject. Can J Cardiol 6: 405–410.
Judgutt BI, Basualdo CA (1989) Myocardial infarct expansion during indomethacin or ibuprofen therapy for symptomatic post infarction pericarditis. Influence of other pharmacologic agents during early remodeling. Can J Cardiol 5: 211–221.
[28]
Dinarello CA (2010) IL-1: discoveries, controversies and future directions. Eur J Immunol 40: 599–606.
[29]
Mezzaroma E, Toldo S, Farkas D, Seropian IM, Van Tassell BW, et al. (2011) The inflammasome promotes adverse cardiac remodeling following acute myocardial infarction in the mouse. Proc Natl Acad Sci U S A 108: 19725–19730.
[30]
Mann DL (2005) Targeted anticytokine therapy and the failing heart. Am J Cardiol 95: 9C–16C.
[31]
Jencks SF, Williams MV, Coleman EA (2009) Rehospitalizations among patients in the Medicare fee-for-service program. New Engl J Med 360: 1418–1428.
[32]
Task Force of the Italian Working Group on Cardiac Rehabilitation and Prevention (Gruppo Italiano di Cardiologia Riabilitativa e Prevenzione, GICR),; Working Group on Cardiac Rehabilitation and Exercise Physiology of the European Society of Cardiology (2006) Statement on cardiopulmonary exercise testing in chronic heart failure due to left ventricular dysfunction: recommendations for performance and interpretation Part III: Interpretation of cardiopulmonary exercise testing in chronic heart failure and future applications. Eur J Cardiovasc Prev Rehabil 13: 485–494.
[33]
Balady GJ, Arena R, Sietsema K, Myers J, Coke L, et al. (2010) American Heart Association Exercise, Cardiac Rehabilitation, and Prevention Committee of the Council on Clinical Cardiology; Council on Epidemiology and Prevention; Council on Peripheral Vascular Disease; Interdisciplinary Council on Quality of Care and Outcomes Research. Clinician’s Guide to cardiopulmonary exercise testing in adults: a scientific statement from the American Heart Association. Circulation 122: 191–225.
[34]
Guazzi M, Arena R (2009) The impact of pharmacotherapy on the cardiopulmonary exercise test response in patients with heart failure: a mini review. Curr Vasc Pharmacol; 7: 557–569.
[35]
Arena R, Myers J, Guazzi M (2008) The clinical and research applications of aerobic capacity and ventilatory efficiency in heart failure: an evidence-based review. Heart Fail Rev 13: 245–269.