全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

Mathematical Modeling of Malaria Infection with Innate and Adaptive Immunity in Individuals and Agent-Based Communities

DOI: 10.1371/journal.pone.0034040

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background Agent-based modeling of Plasmodium falciparum infection offers an attractive alternative to the conventional Ross-Macdonald methodology, as it allows simulation of heterogeneous communities subjected to realistic transmission (inoculation patterns). Methodology/Principal Findings We developed a new, agent based model that accounts for the essential in-host processes: parasite replication and its regulation by innate and adaptive immunity. The model also incorporates a simplified version of antigenic variation by Plasmodium falciparum. We calibrated the model using data from malaria-therapy (MT) studies, and developed a novel calibration procedure that accounts for a deterministic and a pseudo-random component in the observed parasite density patterns. Using the parasite density patterns of 122 MT patients, we generated a large number of calibrated parameters. The resulting data set served as a basis for constructing and simulating heterogeneous agent-based (AB) communities of MT-like hosts. We conducted several numerical experiments subjecting AB communities to realistic inoculation patterns reported from previous field studies, and compared the model output to the observed malaria prevalence in the field. There was overall consistency, supporting the potential of this agent-based methodology to represent transmission in realistic communities. Conclusions/Significance Our approach represents a novel, convenient and versatile method to model Plasmodium falciparum infection.

References

[1]  Macdonald G (1957) The Epidemiology and Control of Malaria. London: Oxford University Press.
[2]  Ross R (1911) The prevention of Malaria. London: John Murray.
[3]  Mandal S, Sarkar RR, Sinha S (2011) Mathematical models of malaria–a review. Malar J 10: 202.
[4]  Maude RJ, Pontavornpinyo W, Saralamba S, Aguas R, Yeung S, et al. (2009) The last man standing is the most resistant: eliminating artemisinin-resistant malaria in Cambodia. Malar J 8: 31.
[5]  McKenzie FE, Samba EM (2004) The role of mathematical modeling in evidence-based malaria control. Am J Trop Med Hyg 71: 94–96.
[6]  Karl S, Gurarie D, Zimmerman PA, King CH, St Pierre TG, et al. (2011) A sub-microscopic gametocyte reservoir can sustain malaria transmission. PLoS One 6: e20805.
[7]  Anderson RM, May RM, Gupta S (1989) Non-linear phenomena in host-parasite interactions. Parasitology 99: SupplS59–79.
[8]  Austin DJ, White NJ, Anderson RM (1998) The dynamics of drug action on the within-host population growth of infectious agents: melding pharmacokinetics with pathogen population dynamics. J Theor Biol 194: 313–339.
[9]  Gurarie D, McKenzie FE (2006) Dynamics of immune response and drug resistance in malaria infection. Malar J 5: 86.
[10]  Gurarie D, Zimmerman PA, King CH (2006) Dynamic regulation of single- and mixed-species malaria infection: insights to specific and non-specific mechanisms of control. J Theor Biol 240: 185–199.
[11]  Mason DP, McKenzie FE, Bossert WH (1999) The blood-stage dynamics of mixed Plasmodium malariae-Plasmodium falciparum infections. J Theor Biol 198: 549–566.
[12]  Molineaux L, Dietz K (1999) Review of intra-host models of malaria. Parassitologia 41: 221–231.
[13]  Gatton ML, Cheng Q (2004) Modeling the development of acquired clinical immunity to Plasmodium falciparum malaria. Infect Immun 72: 6538–6545.
[14]  Maire N, Smith T, Ross A, Owusu-Agyei S, Dietz K, et al. (2006) A model for natural immunity to asexual blood stages of Plasmodium falciparum malaria in endemic areas. Am J Trop Med Hyg 75: 19–31.
[15]  Metcalf CJ, Graham AL, Huijben S, Barclay VC, Long GH, et al. Partitioning regulatory mechanisms of within-host malaria dynamics using the effective propagation number. Science 333: 984–988.
[16]  Dietz K, Raddatz G, Molineaux L (2006) Mathematical model of the first wave of Plasmodium falciparum asexual parasitemia in non-immune and vaccinated individuals. Am J Trop Med Hyg 75: 46–55.
[17]  Molineaux L, Diebner HH, Eichner M, Collins WE, Jeffery GM, et al. (2001) Plasmodium falciparum parasitaemia described by a new mathematical model. Parasitology 122: 379–391.
[18]  Diebner HH, Eichner M, Molineaux L, Collins WE, Jeffery GM, et al. (2000) Modelling the transition of asexual blood stages of Plasmodium falciparum to gametocytes. J Theor Biol 202: 113–127.
[19]  Eichner M, Diebner HH, Molineaux L, Collins WE, Jeffery GM, et al. (2001) Genesis, sequestration and survival of Plasmodium falciparum gametocytes: parameter estimates from fitting a model to malariatherapy data. Trans R Soc Trop Med Hyg 95: 497–501.
[20]  Gurarie D, McKenzie FE (2007) A stochastic model of immune-modulated malaria infection and disease in children. Math Biosci 210: 576–597.
[21]  McKenzie FE, Bossert WH (2005) An integrated model of Plasmodium falciparum dynamics. J Theor Biol 232: 411–426.
[22]  Ross A, Maire N, Molineaux L, Smith T (2006) An epidemiologic model of severe morbidity and mortality caused by Plasmodium falciparum. Am J Trop Med Hyg 75: 63–73.
[23]  Howard RJ, Barnwell JW, Kao V (1983) Antigenic variation of Plasmodium knowlesi malaria: identification of the variant antigen on infected erythrocytes. Proc Natl Acad Sci U S A 80: 4129–4133.
[24]  Phillips RS, Brannan LR, Balmer P, Neuville P (1997) Antigenic variation during malaria infection–the contribution from the murine parasite Plasmodium chabaudi. Parasite Immunol 19: 427–434.
[25]  Recker M, Nee S, Bull PC, Kinyanjui S, Marsh K, et al. (2004) Transient cross-reactive immune responses can orchestrate antigenic variation in malaria. Nature 429: 555–558.
[26]  Scherf A, Hernandez-Rivas R, Buffet P, Bottius E, Benatar C, et al. (1998) Antigenic variation in malaria: in situ switching, relaxed and mutually exclusive transcription of var genes during intra-erythrocytic development in Plasmodium falciparum. Embo J 17: 5418–5426.
[27]  Scherf A, Lopez-Rubio JJ, Riviere L (2008) Antigenic variation in Plasmodium falciparum. Annu Rev Microbiol 62: 445–470.
[28]  Smith JD, Chitnis CE, Craig AG, Roberts DJ, Hudson-Taylor DE, et al. (1995) Switches in expression of Plasmodium falciparum var genes correlate with changes in antigenic and cytoadherent phenotypes of infected erythrocytes. Cell 82: 101–110.
[29]  Sutherland CJ (1998) The Flip-side of Cytoadherence: Immune Selection, Antigenic Variation and the var Genes of Plasmodium falciparum. Parasitol Today 14: 329–332.
[30]  Chookajorn T, Ponsuwanna P, Cui L (2008) Mutually exclusive var gene expression in the malaria parasite: multiple layers of regulation. Trends Parasitol 24: 455–461.
[31]  Yazdani SS, Mukherjee P, Chauhan VS, Chitnis CE (2006) Immune responses to asexual blood-stages of malaria parasites. Curr Mol Med 6: 187–203.
[32]  Paget-McNicol S, Gatton M, Hastings I, Saul A (2002) The Plasmodium falciparum var gene switching rate, switching mechanism and patterns of parasite recrudescence described by mathematical modelling. Parasitology 124: 225–235.
[33]  Collins WE, Jeffery GM (1999) A retrospective examination of the patterns of recrudescence in patients infected with Plasmodium falciparum. Am J Trop Med Hyg 61: 44–48.
[34]  Collins WE, Jeffery GM (1999) A retrospective examination of sporozoite- and trophozoite-induced infections with Plasmodium falciparum in patients previously infected with heterologous species of Plasmodium: effect on development of parasitologic and clinical immunity. Am J Trop Med Hyg 61: 36–43.
[35]  Collins WE, Jeffery GM (1999) A retrospective examination of secondary sporozoite- and trophozoite-induced infections with Plasmodium falciparum: development of parasitologic and clinical immunity following secondary infection. Am J Trop Med Hyg 61: 20–35.
[36]  Collins WE, Jeffery GM (1999) A retrospective examination of sporozoite- and trophozoite-induced infections with Plasmodium falciparum: development of parasitologic and clinical immunity during primary infection. Am J Trop Med Hyg 61: 4–19.
[37]  Carneiro IA, Smith T, Lusingu JP, Malima R, Utzinger J, et al. (2006) Modeling the relationship between the population prevalence of Plasmodium falciparum malaria and anemia. Am J Trop Med Hyg 75: 82–89.
[38]  Beier JC, Killeen GF, Githure JI (1999) Short report: entomologic inoculation rates and Plasmodium falciparum malaria prevalence in Africa. Am J Trop Med Hyg 61: 109–113.
[39]  Vercruysse J, Jancloes M, Van de Velden L (1983) Epidemiology of seasonal falciparum malaria in an urban area of Senegal. Bull World Health Organ 61: 821–831.
[40]  Gazin P, Robert V, Cot M, Carnevale P (1988) Plasmodium falciparum incidence and patency in a high seasonal transmission area of Burkina Faso. Trans R Soc Trop Med Hyg 82: 50–55.
[41]  Karl S, David M, Moore L, Grimberg BT, Michon P, et al. (2008) Enhanced detection of gametocytes by magnetic deposition microscopy predicts higher potential for Plasmodium falciparum transmission. Malar J 7: 66.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133