The prevalence of specific infections in UK prostate cancer patients was investigated. Serum from 84 patients and 62 controls was tested for neutralisation of xenotropic murine leukaemia virus-related virus (XMRV) Envelope. No reactivity was found in the patient samples. In addition, a further 100 prostate DNA samples were tested for XMRV, BK virus, Trichomonas vaginalis and human papilloma viruses by nucleic acid detection techniques. Despite demonstrating DNA integrity and assay sensitivity, we failed to detect the presence of any of these agents in DNA samples, bar one sample that was weakly positive for HPV16. Therefore we conclude that these infections are absent in this typical cohort of men with prostate cancer.
References
[1]
Sutcliffe S (2010) Sexually transmitted infections and risk of prostate cancer: review of historical and emerging hypotheses. Future Oncol 6: 1289–1311.
[2]
Urisman A, Molinaro RJ, Fischer N, Plummer SJ, Casey G, et al. (2006) Identification of a novel Gammaretrovirus in prostate tumors of patients homozygous for R462Q RNASEL variant. PLoS Pathog 2: e25.
[3]
Schlaberg R, Choe DJ, Brown KR, Thaker HM, Singh IR (2009) XMRV is present in malignant prostatic epithelium and is associated with prostate cancer, especially high-grade tumors. Proc Natl Acad Sci U S A 106: 16351–16356.
[4]
Paprotka T, Delviks-Frankenberry KA, Cingoz O, Martinez A, Kung HJ, et al. (2011) Recombinant Origin of the Retrovirus XMRV. Science.
[5]
Cingoz O, Paprotka T, Delviks-Frankenberry KA, Wildt S, Hu WS, et al. (2011) Characterization, Mapping and Distribution of the Two XMRV Parental Proviruses. J Virol.
[6]
Martinez-Fierro ML, Leach RJ, Gomez-Guerra L, Garza-Guajardo R, Pais-Johnson T, et al. (2010) Identification of viral infections in the prostate and evaluation of their association with cancer. BMC Cancer 10: 326.
[7]
Choo CK, Ling MT, Chan KW, Tsao SW, Zheng Z, et al. (1999) Immortalization of human prostate epithelial cells by HPV 16 E6/E7 open reading frames. Prostate 40: 150–158.
[8]
Das D, Wojno K, Imperiale MJ (2008) BK virus as a cofactor in the etiology of prostate cancer in its early stages. J Virol 82: 2705–2714.
[9]
Russo G, Anzivino E, Fioriti D, Mischitelli M, Bellizzi A, et al. (2008) p53 gene mutational rate, Gleason score, and BK virus infection in prostate adenocarcinoma: Is there a correlation? J Med Virol 80: 2100–2107.
[10]
Sutcliffe S, Alderete JF, Till C, Goodman PJ, Hsing AW, et al. (2009) Trichomonosis and subsequent risk of prostate cancer in the Prostate Cancer Prevention Trial. Int J Cancer 124: 2082–2087.
[11]
Groom HC, Boucherit VC, Makinson K, Randal E, Baptista S, et al. (2010) Absence of xenotropic murine leukaemia virus-related virus in UK patients with chronic fatigue syndrome. Retrovirology 7: 10.
[12]
Robinson MJ, Erlwein OW, Kaye S, Weber J, Cingoz O, et al. (2010) Mouse DNA contamination in human tissue tested for XMRV. Retrovirology 7: 108.
[13]
Kenyon JC, Lever AM (2011) XMRV, prostate cancer and chronic fatigue syndrome. Br Med Bull 98: 61–74.
[14]
Arnold RS, Makarova NV, Osunkoya AO, Suppiah S, Scott TA, et al. (2010) XMRV infection in patients with prostate cancer: novel serologic assay and correlation with PCR and FISH. Urology 75: 755–761.
[15]
Hohn O, Bannert N (2011) Origin of XMRV and its Demise as a Human Pathogen Associated with Chronic Fatigue Syndrome. Viruses 3: 1312–1319.
[16]
Hue S, Gray ER, Gall A, Katzourakis A, Tan CP, et al. (2010) Disease-associated XMRV sequences are consistent with laboratory contamination. Retrovirology 7: 111.
[17]
Oakes B, Tai AK, Cingoz O, Henefield MH, Levine S, et al. (2010) Contamination of human DNA samples with mouse DNA can lead to false detection of XMRV-like sequences. Retrovirology 7: 109.
[18]
Sato E, Furuta RA, Miyazawa T (2010) An endogenous murine leukemia viral genome contaminant in a commercial RT-PCR Kit is amplified using standard primers for XMRV. Retrovirology 7: 110.
[19]
Voisset C, Weiss RA, Griffiths DJ (2008) Human RNA “rumor” viruses: the search for novel human retroviruses in chronic disease. Microbiol Mol Biol Rev 72: 157–196, table of contents.
[20]
Hohn O, Strohschein K, Brandt AU, Seeher S, Klein S, et al. (2010) No evidence for XMRV in German CFS and MS patients with fatigue despite the ability of the virus to infect human blood cells in vitro. PLoS One 5: e15632.
[21]
Alberts B (2011) Retraction. Science 334: 1636.
[22]
Lo SC, Pripuzova N, Li B, Komaroff AL, Hung GC, et al. (2010) Detection of MLV-related virus gene sequences in blood of patients with chronic fatigue syndrome and healthy blood donors. Proc Natl Acad Sci U S A 107: 15874–15879.
[23]
Lo SC, Pripuzova N, Li B, Komaroff AL, Hung GC, et al. (2012) Retraction for Lo et al., Detection of MLV-related virus gene sequences in blood of patients with chronic fatigue syndrome and healthy blood donors. Proc Natl Acad Sci U S A 109:
[24]
Lombardi VC, Ruscetti FW, Das Gupta J, Pfost MA, Hagen KS, et al. (2009) Detection of an infectious retrovirus, XMRV, in blood cells of patients with chronic fatigue syndrome. Science 326: 585–589.
[25]
Das D, Shah RB, Imperiale MJ (2004) Detection and expression of human BK virus sequences in neoplastic prostate tissues. Oncogene 23: 7031–7046.
[26]
Sfanos KS, Sauvageot J, Fedor HL, Dick JD, De Marzo AM, et al. (2008) A molecular analysis of prokaryotic and viral DNA sequences in prostate tissue from patients with prostate cancer indicates the presence of multiple and diverse microorganisms. Prostate 68: 306–320.
[27]
Groom HC, Yap MW, Galao RP, Neil SJ, Bishop KN (2010) Susceptibility of xenotropic murine leukemia virus-related virus (XMRV) to retroviral restriction factors. Proc Natl Acad Sci U S A 107: 5166–5171.
[28]
Seif I, Khoury G, Dhar R (1979) The genome of human papovavirus BKV. Cell 18: 963–977.
[29]
Keane TM, Creevey CJ, Pentony MM, Naughton TJ, McLnerney JO (2006) Assessment of methods for amino acid matrix selection and their use on empirical data shows that ad hoc assumptions for choice of matrix are not justified. BMC Evol Biol 6: 29.
[30]
Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754–755.