全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

The Homeostatic Chemokine CCL21 Predicts Mortality and May Play a Pathogenic Role in Heart Failure

DOI: 10.1371/journal.pone.0033038

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background CCL19 and CCL21, acting through CCR7, are termed homeostatic chemokines. Based on their role in concerting immunological responses and their proposed involvement in tissue remodeling, we hypothesized that these chemokines could play a pathogenic role in heart failure (HF). Methodology/Principal Findings Our main findings were: (i) Serum levels of CCL19 and particularly CCL21 were markedly raised in patients with chronic HF (n = 150) as compared with healthy controls (n = 20). A CCL21 level above median was independently associated with all-cause mortality. (ii) In patients with HF following acute myocardial infarction (MI; n = 232), high versus low CCL21 levels 1 month post-MI were associated with cardiovascular mortality, even after adjustment for established risk factors. (iii). Explanted failing human LV tissue (n = 29) had markedly increased expression of CCL21 as compared with non-failing myocardium (n = 5). (iv) Our studies in CCR7?/? mice showed improved survival and attenuated increase in markers of myocardial dysfunction and wall stress in post-MI HF after 1 week, accompanied by increased myocardial expression of markers of regulatory T cells. (v) Six weeks post-MI, there was an increase in markers of myocardial dysfunction and wall stress in CCR7 deficient mice. Conclusions/Significance High serum levels of CCL21 are independently associated with mortality in chronic and acute post-MI HF. Our findings in CCR7 deficient mice may suggest that CCL21 is not only a marker, but also a mediator of myocardial failure. However, while short term inhibition of CCR7 may be beneficial following MI, a total lack of CCR7 during long-term follow-up could be harmful.

References

[1]  Aukrust P, Gullestad L, Ueland T, Dam?s JK, Yndestad A (2005) Inflammatory and anti-inflammatory cytokines in chronic heart failure: potential therapeutic implications. Ann Med 37: 74–85.
[2]  Mann DL (2002) Inflammatory Mediators and the Failing Heart: Past, Present, and the Foreseeable Future. Circ Res 91: 988–998.
[3]  F?rster R, Davalos-Misslitz AC, Rot A (2008) CCR7 and its ligands: balancing immunity and tolerance. Nat Rev Immunol 8: 362–371.
[4]  Müller G, H?pken UE, Stein H, Lipp M (2002) Systemic immunoregulatory and pathogenic functions of homeostatic chemokine receptors. J Leukoc Biol 72: 1–8.
[5]  Menning A, Hopken UE, Siegmund K, Lipp M, Hamann A, et al. (2007) Distinctive role of CCR7 in migration and functional activity of naive- and effector/memory-like Treg subsets. Eur J Immunol 37: 1575–1583.
[6]  Schneider MA, Meingassner JG, Lipp M, Moore HD, Rot A (2007) CCR7 is required for the in vivo function of CD4+ CD25+ regulatory T cells. J Exp Med 204: 735–745.
[7]  Pierce EM, Carpenter K, Jakubzick C, Kunkel SL, Evanoff H, et al. (2007) Idiopathic pulmonary fibrosis fibroblasts migrate and proliferate to CC chemokine ligand 21. Eur Respir J 29: 1082–1093.
[8]  Dam?s JK, Smith C, ?ie E, Fevang B, Halvorsen B, et al. (2007) Enhanced expression of the homeostatic chemokines CCL19 and CCL21 in clinical and experimental atherosclerosis: possible pathogenic role in plaque destabilization. Arterioscler Thromb Vasc Biol 27: 614–620.
[9]  Kaur D, Saunders R, Berger P, Siddiqui S, Woodman L, et al. (2006) Airway smooth muscle and mast cell-derived CC chemokine ligand 19 mediate airway smooth muscle migration in asthma. Am J Respir Crit Care Med 174: 1179–1188.
[10]  Dickstein K, Kjekshus J (2002) Effects of losartan and captopril on mortality and morbidity in high-risk patients after acute myocardial infarction: the OPTIMAAL randomised trial. Optimal Trial in Myocardial Infarction with Angiotensin II Antagonist Losartan. Lancet 360: 752–760.
[11]  Ueland T, Aukrust P, Yndestad A, Otterdal K, Fr?land SS, et al. (2005) Soluble CD40 ligand in acute and chronic heart failure. Eur Heart J 26: 1101–1107.
[12]  F?rster R, Schubel A, Breitfeld D, Kremmer E, Renner-Muller I, et al. (1999) CCR7 coordinates the primary immune response by establishing functional microenvironments in secondary lymphoid organs. Cell 99: 23–33.
[13]  Finsen AV, Christensen G, Sjaastad I (2005) Echocardiographic parameters discriminating myocardial infarction with pulmonary congestion from myocardial infarction without congestion in the mouse. J Appl Physiol 98: 680–689.
[14]  Randolph DA, Fathman CG (2006) Cd4+Cd25+ regulatory T cells and their therapeutic potential. Annu Rev Med 57: 381–402.
[15]  Bruhl H, Mack M, Niedermeier M, Lochbaum D, Scholmerich J, et al. (2008) Functional expression of the chemokine receptor CCR7 on fibroblast-like synoviocytes. Rheumatology (Oxford) 47: 1771–1774.
[16]  Kawashima D, Oshitani N, Jinno Y, Watanabe K, Nakamura S, et al. (2005) Augmented expression of secondary lymphoid tissue chemokine and EBI1 ligand chemokine in Crohn's disease. J Clin Pathol 58: 1057–1063.
[17]  Ait-Oufella H, Salomon BL, Potteaux S, Robertson AK, Gourdy P, et al. (2006) Natural regulatory T cells control the development of atherosclerosis in mice. Nat Med 12: 178–180.
[18]  Feng G, Chan T, Wood KJ, Bushell A (2009) Donor reactive regulatory T cells. Curr Opin Organ Transplant 14: 432–438.
[19]  Kvakan H, Kleinewietfeld M, Qadri F, Park JK, Fischer R, et al. (2009) Regulatory T cells ameliorate angiotensin II-induced cardiac damage. Circulation 119: 2904–2912.
[20]  Krishnamurthy P, Rajasingh J, Lambers E, Qin G, Losordo DW, et al. (2009) IL-10 inhibits inflammation and attenuates left ventricular remodeling after myocardial infarction via activation of STAT3 and suppression of HuR. Circ Res 104: e9–18.
[21]  O'Garra A, Barrat FJ, Castro AG, Vicari A, Hawrylowicz C (2008) Strategies for use of IL-10 or its antagonists in human disease. Immunol Rev 223: 114–131.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133