全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

Enhancing Production of Bio-Isoprene Using Hybrid MVA Pathway and Isoprene Synthase in E. coli

DOI: 10.1371/journal.pone.0033509

Full-Text   Cite this paper   Add to My Lib

Abstract:

The depleting petroleum reserve, increasingly severe energy crisis, and global climate change are reigniting enthusiasm for seeking sustainable technologies to replace petroleum as a source of fuel and chemicals. In this paper, the efficiency of the MVA pathway on isoprene production has been improved as follows: firstly, in order to increase MVA production, the source of the “upper pathway” which contains HMG-CoA synthase, acetyl-CoA acetyltransferase and HMG-CoA reductase to covert acetyl-CoA into MVA has been changed from Saccharomyces cerevisiae to Enterococcus faecalis; secondly, to further enhance the production of MVA and isoprene, a alanine 110 of the mvaS gene has been mutated to a glycine. The final genetic strain YJM25 containing the optimized MVA pathway and isoprene synthase from Populus alba can accumulate isoprene up to 6.3 g/L after 40 h of fed-batch cultivation.

References

[1]  Sanadze G (1956) Emission of Gaseous Organic Substances from Plants. Repertuar Akademiia Nauk Gruzinskoi SSR 17: 429–433.
[2]  Sanadze G (1957) Nature of Gaseous Substances from the Robinia pseudoacacia Leaves. Rep Akad Nauk GruzSSR 19: 83¨ sC86:
[3]  Loreto F, Velikova V (2001) Isoprene produced by leaves protects the photosynthetic apparatus against ozone damage, quenches ozone products, and reduces lipid peroxidation of cellular membranes. Plant Physiology 127: 1781.
[4]  Pe?uelas J, Llusia J, Asensio D, Munné-Bosch S (2005) Linking isoprene with plant thermotolerance, antioxidants and monoterpene emissions. Plant, Cell & Environment 28: 278–286.
[5]  Terry G, Stokes N, Hewitt C, Mansfield T (1995) Exposure to isoprene promotes flowering in plants. Journal of experimental botany 46: 1629.
[6]  Alianell GA, Derwitsch F, Wells D, Taylor T (2010) Isoprene compositions and methods of use. US2010/0099932 A1:
[7]  Lindberg P, Park S, Melis A (2010) Engineering a platform for photosynthetic isoprene production in cyanobacteria, using Synechocystis as the model organism. Metabolic Engineering 12: 70–79.
[8]  Sacchettini JC, Poulter CD (1997) Creating isoprenoid diversity. Science 277: 1788.
[9]  Reis T (1972) Isoprene production.2. Synthesis based on isobutylene. Chem Process Eng 53: 68–71.
[10]  Ushio S (1972) Extract isoprene with DMF. Chem Eng Prog 79: 82–83.
[11]  DiGiacomo AA, Maerker JB, Schall JW (1961) Isoprene by Dehydrogenation. Chem Eng Prog 57: 3540.
[12]  Clomburg JM, Gonzalez R (2010) Biofuel production in Escherichia coli: the role of metabolic engineering and synthetic biology. Applied microbiology and biotechnology 86: 419–434.
[13]  Steinbuchel A (2003) Production of rubber-like polymers by microorganisms. Current Opinion in Microbiology 6: 261–270.
[14]  Seemann M, Campos N, Rodriguez-Concepción M, Iba?ez E, Duvold T, et al. (2002) Isoprenoid biosynthesis in Escherichia coli via the methylerythritol phosphate pathway: enzymatic conversion of methylerythritol cyclodiphosphate into a phosphorylated derivative of (E)-2-methylbut-2-ene-1, 4-diol. Tetrahedron Letters 43: 1413–1415.
[15]  Eroglu E, Melis A (2010) Extracellular terpenoid hydrocarbon extraction and quantitation from the green microalgae Botryococcus braunii var. Showa. Bioresource technology 101: 2359–2366.
[16]  Anthony JR, Anthony LC, Nowroozi F, Kwon G, Newman JD, et al. (2009) Optimization of the mevalonate-based isoprenoid biosynthetic pathway in Escherichia coli for production of the anti-malarial drug precursor amorpha-4, 11-diene. Metabolic Engineering 11: 13–19.
[17]  Campos N, Rodriguez-Concepcion M, Sauret-Gueto S, Gallego F, Lois L, et al. (2001) Escherichia coli engineered to synthesize isopentenyl diphosphate and dimethylallyl diphosphate from mevalonate: a novel system for the genetic analysis of the 2-C-methyl-d-erythritol 4-phosphate pathway for isoprenoid biosynthesis. Biochemical Journal 353: 59.
[18]  Martin VJJ, Pitera DJ, Withers ST, Newman JD, Keasling JD (2003) Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nature biotechnology 21: 796–802.
[19]  Newman JD, Marshall J, Chang M, Nowroozi F, Paradise E, et al. (2006) High-level production of amorpha-4, 11-diene in a two-phase partitioning bioreactor of metabolically engineered Escherichia coli. Biotechnology and bioengineering 95: 684–691.
[20]  Pitera DJ, Paddon CJ, Newman JD, Keasling JD (2007) Balancing a heterologous mevalonate pathway for improved isoprenoid production in Escherichia coli. Metabolic Engineering 9: 193–207.
[21]  Rodriguez-Villalon A, Perez-Gil J, Rodriguez-Concepcion M (2008) Carotenoid accumulation in bacteria with enhanced supply of isoprenoid precursors by upregulation of exogenous or endogenous pathways. Journal of biotechnology 135: 78–84.
[22]  Yoon SH, Lee SH, Das A, Ryu HK, Jang HJ, et al. (2009) Combinatorial expression of bacterial whole mevalonate pathway for the production of [beta]-carotene in E. coli. Journal of biotechnology 140: 218–226.
[23]  Rohmer M, Knani M, Simonin P, Sutter B, Sahm H (1993) Isoprenoid biosynthesis in bacteria: a novel pathway for the early steps leading to isopentenyl diphosphate. Biochemical Journal 295: 517.
[24]  Schwarz MK (1994) Terpen-Biosynthese in Ginkgo biloba:Eine überraschende Geschichte. PhD Thesis, ETH Zürich, Switzerland.
[25]  Rodr??guez-Concepción M, Boronat A (2002) Elucidation of the methylerythritol phosphate pathway for isoprenoid biosynthesis in bacteria and plastids. A metabolic milestone achieved through genomics. Plant Physiology 130: 1079–1089.
[26]  Eisenreich W, Bacher A, Arigoni D, Rohdich F (2004) Biosynthesis of isoprenoids via the non-mevalonate pathway. Cellular and Molecular Life Sciences 61: 1401–1426.
[27]  Rodriguez-Concepcion M (2004) The MEP pathway: A new target for the development of herbicides, antibiotics and antimalarial drugs. Current Pharmaceutical Design 10: 2391–2400.
[28]  Kim SJ, Kim MD, Choi JH, Kim SY, Ryu YW, et al. (2006) Amplification of 1-deoxy-d-xyluose 5-phosphate (DXP) synthase level increases coenzyme Q 10 production in recombinant Escherichia coli. Applied Microbiology and Biotechnology 72: 982–985.
[29]  Xue JF, Ahring BK (2011) Enhancing isoprene production by genetic modification of the DXP pathway in Bacillus subtilis. Applied and environmental microbiology 77: 2399–2405.
[30]  Ghimire GP, Lee HC, Sohng JK (2009) Improved Squalene Production via Modulation of the Methylerythritol 4-Phosphate Pathway and Heterologous Expression of Genes from Streptomyces peucetius ATCC 27952 in Escherichia coli. Applied and Environmental Microbiology 75: 7291.
[31]  Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor.
[32]  Jiang X YJ, Zhang H, Zou H, Wang C (2012) In Vitro Assembly of Multiple DNA Fragments Using Successive Hybridization. PLoS ONE. e30267 p. doi:30210.31371/journal.pone.0030267.
[33]  Steussy CN, Robison AD, Tetrick AM, Knight JT, Rodwell VW, et al. (2006) A structural limitation on enzyme activity: the case of HMG-CoA synthase. Biochemistry 45: 14407–14414.
[34]  Pfleger BF, Pitera DJ, Newman JD, Martin VJJ, Keasling JD (2007) Microbial sensors for small molecules: development of a mevalonate biosensor. Metabolic Engineering 9: 30–38.
[35]  Julsing MK, Rijpkema M, Woerdenbag HJ, Quax WJ, Kayser O (2007) Functional analysis of genes involved in the biosynthesis of isoprene in Bacillus subtilis. Applied microbiology and biotechnology 75: 1377–1384.
[36]  Tabata K, Hashimoto SI (2004) Production of mevalonate by a metabolically-engineered Escherichia coli. Biotechnology letters 26: 1487–1491.
[37]  Steussy CN, Vartia AA, Burgner JW, Sutherlin A, Rodwell VW, et al. (2005) X-ray crystal structures of HMG-CoA synthase from Enterococcus faecalis and a complex with its second substrate/inhibitor acetoacetyl-CoA. Biochemistry 44: 14256–14267.
[38]  Kuhlman TE, Cox EC (2010) Site-specific chromosomal integration of large synthetic constructs. Nucleic Acids Research 38: e92.
[39]  Chen HT, Lin MS, Hou SY (2008) Multiple-copy-gene integration on chromosome of Escherichia coli for beta-galactosidase production. Korean Journal of Chemical Engineering 25: 1082–1087.
[40]  Chen X, Xu Z, Cen P, Wong W (2006) Enhanced plasmid stability and production of hEGF by immobilized recombinant E. coli JM101. Biochemical engineering journal 28: 215–219.
[41]  Kilonzo P, Margaritis A, Bergougnou M (2009) Airlift-driven fibrous-bed bioreactor for continuous production of glucoamylase using immobilized recombinant yeast cells. Journal of biotechnology 143: 60–68.
[42]  Zhao Y, Yang J, Qin B, Li Y, Sun Y, et al. (2011) Biosynthesis of isoprene in Escherichia coli via methylerythritol phosphate (MEP) pathway. Applied microbiology and biotechnology. pp. 1–8.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133