全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

Neoplastic Transformation of T Lymphocytes through Transgenic Expression of a Virus Host Modification Protein

DOI: 10.1371/journal.pone.0034140

Full-Text   Cite this paper   Add to My Lib

Abstract:

Virus host evasion genes are ready-made tools for gene manipulation and therapy. In this work we have assessed the impact in vivo of the evasion gene A238L of the African Swine Fever Virus, a gene which inhibits transcription mediated by both NF-κB and NFAT. The A238L gene has been selectively expressed in mouse T lymphocytes using tissue specific promoter, enhancer and locus control region sequences for CD2. The resulting two independently derived transgenic mice expressed the transgene and developed a metastasic, angiogenic and transplantable CD4+CD8+CD69– lymphoma. The CD4+CD8+CD69– cells also grew vigorously in vitro. The absence of CD69 from the tumour cells suggests that they were derived from T cells at a stage prior to positive selection. In contrast, transgenic mice similarly expressing a mutant A238L, solely inhibiting transcription mediated by NF-κB, were indistinguishable from wild type mice. Expression of Rag1, Rag2, TCRβ-V8.2, CD25, FoxP3, Bcl3, Bcl2 l14, Myc, IL-2, NFAT1 and Itk, by purified CD4+CD8+CD69– thymocytes from A238L transgenic mice was consistent with the phenotype. Similarly evaluated expression profiles of CD4+CD8+ CD69– thymocytes from the mutant A238L transgenic mice were comparable to those of wild type mice. These features, together with the demonstration of (mono-)oligoclonality, suggest a transgene-NFAT-dependent transformation yielding a lymphoma with a phenotype reminiscent of some acute lymphoblastic lymphomas.

References

[1]  Finlay BB, McFadden G (2006) (2006) Anti-immunology: evasion of the host immune system by bacterial and viral pathogens. Cell 124: 767–782. Available: http://www.ncbi.nlm.nih.gov/pubmed/16497?587.
[2]  Vischer HF, Vink C, Smit MJ (2006) (2006) A viral conspiracy: hijacking the chemokine system through virally encoded pirated chemokine receptors. Current topics in microbiology and immunology 303: 121–154. Available: http://www.ncbi.nlm.nih.gov/pubmed/16570?859.
[3]  Loo YM, Gale M (2007) (2007) Viral regulation and evasion of the host response. Current topics in microbiology and immunology 316: 295–313. Available:http://www.ncbi.nlm.nih.gov/pubmed/17969?453.
[4]  Unterholzner L, Bowie AG (2008) (2008) The interplay between viruses and innate immune signaling: recent insights and therapeutic opportunities. Biochemical pharmacology 75: 589–602. Available: http://www.ncbi.nlm.nih.gov/pubmed/17868?652.
[5]  Bonjardim CA, Ferreira PCP, Kroon EG (2009) (2009) Interferons: signaling, antiviral and viral evasion. Immunology letters 122: 1–11. Available: http://www.ncbi.nlm.nih.gov/pubmed/19059?436.
[6]  Jonji? S, Babi? M, Poli? B, Krmpoti? A (2008) (2008) Immune evasion of natural killer cells by viruses. Current opinion in immunology 20: 30–38. Available: http://www.pubmedcentral.nih.gov/article?render.fcgi?artid=2700287&tool=pmcentrez?&rendertype=abstract.
[7]  Revilla Y, Granja AG (2009) (2009) Viral mechanisms involved in the transcriptional CBP/p300 regulation of inflammatory and immune responses. Critical reviews in immunology 29: 131–154. Available: http://www.ncbi.nlm.nih.gov/pubmed/19496?744.
[8]  Zhou F (2009) (2009) Molecular mechanisms of viral immune evasion proteins to inhibit MHC class I antigen processing and presentation. International reviews of immunology 28: 376–393. Available: http://www.ncbi.nlm.nih.gov/pubmed/19811?316.
[9]  Powell PP, Dixon LK, Parkhouse RM (1996) (1996) An IkappaB homolog encoded by African swine fever virus provides a novel mechanism for downregulation of proinflammatory cytokine responses in host macrophages. Journal of virology 70: 8527–8533. Available: http://www.pubmedcentral.nih.gov/article?render.fcgi?artid=190944&tool=pmcentrez&?rendertype=abstract.
[10]  Revilla Y, Callejo M, Rodríguez JM, Culebras E, Nogal ML, et al. (1998) Inhibition of nuclear factor kappaB activation by a virus-encoded IkappaB-like protein. The Journal of biological chemistry 273: 5405–5411. Available: http://www.ncbi.nlm.nih.gov/pubmed/94790?02.
[11]  Miskin JE, Abrams CC, Goatley LC, Dixon LK (1998) (1998) A viral mechanism for inhibition of the cellular phosphatase calcineurin. Science (New York, NY) 281: 562–565. Available: http://www.ncbi.nlm.nih.gov/pubmed/96771?99.
[12]  Miskin JE, Abrams CC, Dixon LK (2000) (2000) African swine fever virus protein A238L interacts with the cellular phosphatase calcineurin via a binding domain similar to that of NFAT. Journal of virology 74: 9412–9420. Available: http://www.pubmedcentral.nih.gov/article?render.fcgi?artid=112370&tool=pmcentrez&?rendertype=abstract.
[13]  Granja AG, Nogal ML, Hurtado C, Vila V, Carrascosa AL, et al. (2004) The viral protein A238L inhibits cyclooxygenase-2 expression through a nuclear factor of activated T cell-dependent transactivation pathway. The Journal of biological chemistry 279: 53736–53746. Available: http://www.ncbi.nlm.nih.gov/pubmed/15471?864.
[14]  Granja AG, Nogal ML, Hurtado C, Del Aguila C, Carrascosa AL, et al. (2006) The viral protein A238L inhibits TNF-alpha expression through a CBP/p300 transcriptional coactivators pathway. Journal of immunology (Baltimore, Md□: 1950) 176: 451–462. Available: http://www.ncbi.nlm.nih.gov/pubmed/16365?438.
[15]  Granja AG, Sabina P, Salas ML, Fresno M, Revilla Y (2006) (2006) Regulation of inducible nitric oxide synthase expression by viral A238L-mediated inhibition of p65/RelA acetylation and p300 transactivation. Journal of virology 80: 10487–10496. Available:http://www.pubmedcentral.nih.gov/article?render.fcgi?artid=1641776&tool=pmcentrez?&rendertype=abstract.
[16]  Granja AG, Perkins ND, Revilla Y (2008) (2008) A238L inhibits NF-ATc2, NF-kappa B, and c-Jun activation through a novel mechanism involving protein kinase C-theta-mediated up-regulation of the amino-terminal transactivation domain of p300. Journal of immunology (Baltimore, Md□: 1950) 180: 2429–2442. Available: http://www.ncbi.nlm.nih.gov/pubmed/18250?452.
[17]  Granja AG, Sánchez EG, Sabina P, Fresno M, Revilla Y (2009) African swine fever virus blocks the host cell antiviral inflammatory response through a direct inhibition of PKC-theta-mediated p300 transactivation. Journal of virology 83: 969–980. Available: http://www.pubmedcentral.nih.gov/article?render.fcgi?artid=2612362&tool=pmcentrez?&rendertype=abstract.
[18]  Gerritsen ME, Williams AJ, Neish AS, Moore S, Shi Y, et al. (1997) CREB-binding protein/p300 are transcriptional coactivators of p65. Proceedings of the National Academy of Sciences of the United States of America 94: 2927–2932. Available: http://www.pubmedcentral.nih.gov/article?render.fcgi?artid=20299&tool=pmcentrez&r?endertype=abstract.
[19]  Perkins ND, Felzien LK, Betts JC, Leung K, Beach DH, et al. (1997) Regulation of NF-kappaB by cyclin-dependent kinases associated with the p300 coactivator. Science (New York, NY) 275: 523–527. Available: http://www.ncbi.nlm.nih.gov/pubmed/89997?95.
[20]  García-Rodríguez C, Rao A (1998) (1998) Nuclear factor of activated T cells (NFAT)-dependent transactivation regulated by the coactivators p300/CREB-binding protein (CBP). The Journal of experimental medicine 187: 2031–2036. Available: http://www.pubmedcentral.nih.gov/article?render.fcgi?artid=2212364&tool=pmcentrez?&rendertype=abstract.
[21]  Born W, Yagüe J, Palmer E, Kappler J, Marrack P (1985) (1985) Rearrangement of T-cell receptor beta-chain genes during T-cell development. Proceedings of the National Academy of Sciences of the United States of America 82: 2925–2929. Available: http://www.pubmedcentral.nih.gov/article?render.fcgi?artid=397679&tool=pmcentrez&?rendertype=abstract.
[22]  Rudensky AY (2011) (2006) Regulatory T cells and Foxp3. Immunological reviews 241: 260–268. Available: http://www.pubmedcentral.nih.gov/article?render.fcgi?artid=3077798&tool=pmcentrez?&rendertype=abstract.
[23]  Chang P-Y, Draheim K, Kelliher MA, Miyamoto S (2006) (2006) NFKB1 is a direct target of the TAL1 oncoprotein in human T leukemia cells. Cancer research 66: 6008–6013. Available: http://www.ncbi.nlm.nih.gov/pubmed/16778?171. Accessed 2 September 2011.
[24]  Spanopoulou E, Early A, Elliott J, Crispe N, Ladyman H, et al. (1989) Complex lymphoid and epithelial thymic tumours in Thy1-myc transgenic mice. Nature 342: 185–189. Available: http://www.ncbi.nlm.nih.gov/pubmed/25729?68.
[25]  Tait SW, Reid EB, Greaves DR, Wileman TE, Powell PP (2000) (2005) Mechanism of inactivation of NF-kappa B by a viral homologue of I kappa b alpha. Signal-induced release of i kappa b alpha results in binding of the viral homologue to NF-kappa B. The Journal of biological chemistry 275: 34656–34664. Available: http://www.ncbi.nlm.nih.gov/pubmed/10934?190.
[26]  Wulczyn FG, Naumann M, Scheidereit C (1992) (1992) Candidate proto-oncogene bcl-3 encodes a subunit-specific inhibitor of transcription factor NF-kappa B. Nature 358: 597–599. Available: http://www.ncbi.nlm.nih.gov/pubmed/15017?14.
[27]  Ohno H, Nishikori M, Maesako Y, Haga H (2005) (2005) Reappraisal of BCL3 as a molecular marker of anaplastic large cell lymphoma. International journal of hematology 82: 397–405. Available: http://www.ncbi.nlm.nih.gov/pubmed/16533?741.
[28]  Guo B, Godzik A, Reed JC (2001) (2001) Bcl-G, a novel pro-apoptotic member of the Bcl-2 family. The Journal of biological chemistry 276: 2780–2785. Available: http://www.ncbi.nlm.nih.gov/pubmed/11054?413.
[29]  Luo N, Wu Y, Chen Y, Yang Z, Guo S, et al. (2009) Upregulated BclG(L) expression enhances apoptosis of peripheral blood CD4+ T lymphocytes in patients with systemic lupus erythematosus. Clinical immunology (Orlando, Fla) 132: 349–361. Available: http://www.ncbi.nlm.nih.gov/pubmed/19524?489.
[30]  Wang C, Tai Y, Lisanti MP, Liao DJ (2011) (2011) c-Myc induction of programmed cell death may contribute to carcinogenesis: a perspective inspired by several concepts of chemical carcinogenesis. Cancer biology & therapy 11: 615–626. Available: http://www.pubmedcentral.nih.gov/article?render.fcgi?artid=3084967&tool=pmcentrez?&rendertype=abstract. Accessed 6 September 2011.
[31]  Leonardi E, Girlando S, Serio G, Mauri FA, Perrone G, et al. (1992) PCNA and Ki67 expression in breast carcinoma: correlations with clinical and biological variables. Journal of clinical pathology 45: 416–419. Available: http://www.pubmedcentral.nih.gov/article?render.fcgi?artid=495304&tool=pmcentrez&?rendertype=abstract.
[32]  Readinger JA, Mueller KL, Venegas AM, Horai R, Schwartzberg PL (2009) (2009) Tec kinases regulate T-lymphocyte development and function: new insights into the roles of Itk and Rlk/Txk. Immunological reviews 228: 93–114. Available: http://www.pubmedcentral.nih.gov/article?render.fcgi?artid=2673963&tool=pmcentrez?&rendertype=abstract.
[33]  Oukka M, Ho IC, de la Brousse FC, Hoey T, Grusby MJ, et al. (1998) The transcription factor NFAT4 is involved in the generation and survival of T cells. Immunity 9: 295–304. Available:http://www.ncbi.nlm.nih.gov/pubmed/97687?49.
[34]  Glud SZ, S?rensen AB, Andrulis M, Wang B, Kondo E, et al. (2005) A tumor-suppressor function for NFATc3 in T-cell lymphomagenesis by murine leukemia virus. Blood 106: 3546–3552. Available: http://www.pubmedcentral.nih.gov/article?render.fcgi?artid=1895049&tool=pmcentrez?&rendertype=abstract.
[35]  Bueno OF, Brandt EB, Rothenberg ME, Molkentin JD (2002) (2002) Defective T cell development and function in calcineurin A beta -deficient mice. Proceedings of the National Academy of Sciences of the United States of America 99: 9398–9403. Available: http://www.pubmedcentral.nih.gov/article?render.fcgi?artid=123152&tool=pmcentrez&?rendertype=abstract.
[36]  Bopp T, Palmetshofer A, Serfling E, Heib V, Schmitt S, et al. (2005) NFATc2 and NFATc3 transcription factors play a crucial role in suppression of CD4+ T lymphocytes by CD4+ CD25+ regulatory T cells. The Journal of experimental medicine 201: 181–187. Available: http://www.pubmedcentral.nih.gov/article?render.fcgi?artid=2212786&tool=pmcentrez?&rendertype=abstract.
[37]  Beg AA, Sha WC, Bronson RT, Ghosh S, Baltimore D (1995) (1995) Embryonic lethality and liver degeneration in mice lacking the RelA component of NF-kappa B. Nature 376: 167–170. Available: http://www.ncbi.nlm.nih.gov/pubmed/76035?67.
[38]  Burkly L, Hession C, Ogata L, Reilly C, Marconi LA, et al. (1995) Expression of relB is required for the development of thymic medulla and dendritic cells. Nature 373: 531–536. Available: http://www.ncbi.nlm.nih.gov/pubmed/78454?67.
[39]  K?ntgen F, Grumont RJ, Strasser A, Metcalf D, Li R, et al. (1995) Mice lacking the c-rel proto-oncogene exhibit defects in lymphocyte proliferation, humoral immunity, and interleukin-2 expression. Genes & development 9: 1965–1977. Available: http://www.ncbi.nlm.nih.gov/pubmed/76494?78.
[40]  Sha WC, Liou HC, Tuomanen EI, Baltimore D (1995) (1995) Targeted disruption of the p50 subunit of NF-kappa B leads to multifocal defects in immune responses. Cell 80: 321–330. Available: http://www.ncbi.nlm.nih.gov/pubmed/78347?52.
[41]  Weih F, Carrasco D, Durham SK, Barton DS, Rizzo CA, et al. (1995) Multiorgan inflammation and hematopoietic abnormalities in mice with a targeted disruption of RelB, a member of the NF-kappa B/Rel family. Cell 80: 331–340. Available: http://www.ncbi.nlm.nih.gov/pubmed/78347?53.
[42]  Baeuerle PA, Baltimore D (1996) (1996) NF-kappa B: ten years after. Cell 87: 13–20. Available: http://www.ncbi.nlm.nih.gov/pubmed/88581?44.
[43]  Esslinger CW, Wilson A, Sordat B, Beermann F, Jongeneel CV (1997) (1997) Abnormal T lymphocyte development induced by targeted overexpression of IkappaB alpha. Journal of immunology (Baltimore, Md□: 1950) 158: 5075–5078. Available: http://www.ncbi.nlm.nih.gov/pubmed/91649?19.
[44]  Medyouf H, Alcalde H, Berthier C, Guillemin MC, dos Santos NR, et al. (2007) Targeting calcineurin activation as a therapeutic strategy for T-cell acute lymphoblastic leukemia. Nature medicine 13: 736–741. Available: http://www.ncbi.nlm.nih.gov/pubmed/17515?895.
[45]  Zhumabekov T, Corbella P, Tolaini M, Kioussis D (1995) (1995) Improved version of a human CD2 minigene based vector for T cell-specific expression in transgenic mice. Journal of immunological methods 185: 133–140. Available: http://www.ncbi.nlm.nih.gov/pubmed/76658?95.
[46]  Palmer MS, Bentley A, Gould K, Townsend AR (1989) (1989) The T cell receptor from an influenza-A specific murine CTL clone. Nucleic acids research 17: 2353. Available: http://www.pubmedcentral.nih.gov/article?render.fcgi?artid=317602&tool=pmcentrez&?rendertype=abstract.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133