全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

Cathepsin S Deficiency Results in Abnormal Accumulation of Autophagosomes in Macrophages and Enhances Ang II–Induced Cardiac Inflammation

DOI: 10.1371/journal.pone.0035315

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background Cathepsin S (Cat S) is overexpressed in human atherosclerotic and aneurysmal tissues and may contributes to degradation of extracellular matrix, especially elastin, in inflammatory diseases. We aimed to define the role of Cat S in cardiac inflammation and fibrosis induced by angiotensin II (Ang II) in mice. Methods and Results Cat S-knockout (Cat S?/?) and littermate wild-type (WT) C57BL/6J mice were infused continuously with Ang II (750 ng/kg/min) or saline for 7 days. Cat S?/? mice showed severe cardiac fibrosis, including elevated expression of collagen I and α-smooth muscle actin (α-SMA), as compared with WT mice. Moreover, macrophage infiltration and expression of inflammatory cytokines (tumor necrosis factor α, transforming growth factor β and interleukin 1β) were significantly greater in Cat S?/? than WT hearts. These Ang II-induced effects in Cat S?/? mouse hearts was associated with abnormal accumulation of autophagosomes and reduced clearance of damaged mitochondria, which led to increased levels of reactive oxygen species (ROS) and activation of nuclear factor-kappa B (NF-κB) in macrophages. Conclusion Cat S in lysosomes is essential for mitophagy processing in macrophages, deficiency in Cat S can increase damaged mitochondria and elevate ROS levels and NF-κB activity in hypertensive mice, so it regulates cardiac inflammation and fibrosis.

References

[1]  Badenhorst D, Maseko M, Tsotetsi OJ, Naidoo A, Brooksbank R, et al. (2003) Cross-linking influences the impact of quantitative changes in myocardial collagen on cardiac stiffness and remodelling in hypertension in rats. Cardiovasc Res 57: 632–641.
[2]  Wynn TA (2007) Common and unique mechanisms regulate fibrosis in various fibroproliferative diseases. J Clin Invest 117: 524–529.
[3]  Blyszczuk P, Kania G, Dieterle T, Marty RR, Valaperti A, et al. (2009) Myeloid differentiation factor-88/interleukin-1 signaling controls cardiac fibrosis and heart failure progression in inflammatory dilated cardiomyopathy. Circ Res 105: 912–920.
[4]  Kania G, Blyszczuk P, Eriksson U (2009) Mechanisms of cardiac fibrosis in inflammatory heart disease. Trends Cardiovasc Med 19: 247–252.
[5]  Cucoranu I, Clempus R, Dikalova A, Phelan PJ, Ariyan S, et al. (2005) NAD(P)H oxidase 4 mediates transforming growth factor-beta1-induced differentiation of cardiac fibroblasts into myofibroblasts. Circ Res 97: 900–907.
[6]  Mohamed MM, Sloane BF (2006) Cysteine cathepsins: multifunctional enzymes in cancer. Nat Rev Cancer 6: 764–775.
[7]  Pozgan U, Caglic D, Rozman B, Nagase H, Turk V, et al. (2010) Expression and activity profiling of selected cysteine cathepsins and matrix metalloproteinases in synovial fluids from patients with rheumatoid arthritis and osteoarthritis. Biol Chem 391: 571–579.
[8]  Liu J, Sukhova GK, Yang JT, Sun J, Ma L, et al. (2006) Cathepsin L expression and regulation in human abdominal aortic aneurysm, atherosclerosis, and vascular cells. Atherosclerosis 184: 302–311.
[9]  de Nooijer R, Bot I, von der Thusen JH, Leeuwenburgh MA, Overkleeft HS, et al. (2009) Leukocyte cathepsin S is a potent regulator of both cell and matrix turnover in advanced atherosclerosis. Arterioscler Thromb Vasc Biol 29: 188–194.
[10]  Burns-Kurtis CL, Olzinski AR, Needle S, Fox JH, Capper EA, et al. (2004) Cathepsin S expression is up-regulated following balloon angioplasty in the hypercholesterolemic rabbit. Cardiovasc Res 62: 610–620.
[11]  Sukhova GK, Shi GP, Simon DI, Chapman HA, Libby P (1998) Expression of the elastolytic cathepsins S and K in human atheroma and regulation of their production in smooth muscle cells. J Clin Invest 102: 576–583.
[12]  Sasaki T, Kuzuya M, Nakamura K, Cheng XW, Hayashi T, et al. (2010) AT1 blockade attenuates atherosclerotic plaque destabilization accompanied by the suppression of cathepsin S activity in apoE-deficient mice. Atherosclerosis 210: 430–437.
[13]  Koike M, Shibata M, Waguri S, Yoshimura K, Tanida I, et al. (2005) Participation of autophagy in storage of lysosomes in neurons from mouse models of neuronal ceroid-lipofuscinoses (Batten disease). Am J Pathol 167: 1713–1728.
[14]  Shacka JJ, Klocke BJ, Young C, Shibata M, Olney JW, et al. (2007) Cathepsin D deficiency induces persistent neurodegeneration in the absence of Bax-dependent apoptosis. J Neurosci 27: 2081–2090.
[15]  Koike M, Nakanishi H, Saftig P, Ezaki J, Isahara K, et al. (2000) Cathepsin D deficiency induces lysosomal storage with ceroid lipofuscin in mouse CNS neurons. J Neurosci 20: 6898–6906.
[16]  Stahl S, Reinders Y, Asan E, Mothes W, Conzelmann E, et al. (2007) Proteomic analysis of cathepsin B- and L-deficient mouse brain lysosomes. Biochim Biophys Acta 1774: 1237–1246.
[17]  Porrello ER, D’Amore A, Curl CL, Allen AM, Harrap SB, et al. (2009) Angiotensin II type 2 receptor antagonizes angiotensin II type 1 receptor-mediated cardiomyocyte autophagy. Hypertension 53: 1032–1040.
[18]  Yadav A, Vallabu S, Arora S, Tandon P, Slahan D, et al. ANG II promotes autophagy in podocytes. Am J Physiol Cell Physiol 299: C488–496.
[19]  Zhu H, Tannous P, Johnstone JL, Kong Y, Shelton JM, et al. (2007) Cardiac autophagy is a maladaptive response to hemodynamic stress. J Clin Invest 117: 1782–1793.
[20]  Huang XR, Chung AC, Yang F, Yue W, Deng C, et al. (2010) Smad3 mediates cardiac inflammation and fibrosis in angiotensin II-induced hypertensive cardiac remodeling. Hypertension 55: 1165–1171.
[21]  Wynn TA (2008) Cellular and molecular mechanisms of fibrosis. J Pathol 214: 199–210.
[22]  Karioti A, Skaltsa H, Zhang X, Tonge PJ, Perozzo R, et al. (2008) Inhibiting enoyl-ACP reductase (FabI) across pathogenic microorganisms by linear sesquiterpene lactones from Anthemis auriculata. Phytomedicine 15: 1125–1129.
[23]  Wang W, Huang XR, Li AG, Liu F, Li JH, et al. (2005) Signaling mechanism of TGF-beta1 in prevention of renal inflammation: role of Smad7. J Am Soc Nephrol 16: 1371–1383.
[24]  Yang C, Yang Z, Zhang M, Dong Q, Wang X, et al. (2011) Hydrogen sulfide protects against chemical hypoxia-induced cytotoxicity and inflammation in HaCaT cells through inhibition of ROS/NF-kappaB/COX-2 pathway. PLoS One 6: e21971.
[25]  Scherz-Shouval R, Elazar Z (2011) Regulation of autophagy by ROS: physiology and pathology. Trends Biochem Sci 36: 30–38.
[26]  Nakagawa I, Amano A, Mizushima N, Yamamoto A, Yamaguchi H, et al. (2004) Autophagy defends cells against invading group A Streptococcus. Science 306: 1037–1040.
[27]  Green DR, Galluzzi L, Kroemer G (2011) Mitochondria and the autophagy-inflammation-cell death axis in organismal aging. Science 333: 1109–1112.
[28]  Shah PK, Falk E, Badimon JJ, Fernandez-Ortiz A, Mailhac A, et al. (1995) Human monocyte-derived macrophages induce collagen breakdown in fibrous caps of atherosclerotic plaques. Potential role of matrix-degrading metalloproteinases and implications for plaque rupture. Circulation 92: 1565–1569.
[29]  Usher MG, Duan SZ, Ivaschenko CY, Frieler RA, Berger S, et al. (2010) Myeloid mineralocorticoid receptor controls macrophage polarization and cardiovascular hypertrophy and remodeling in mice. J Clin Invest 120: 3350–3364.
[30]  Lutgens SP, Kisters N, Lutgens E, van Haaften RI, Evelo CT, et al. (2006) Gene profiling of cathepsin K deficiency in atherogenesis: profibrotic but lipogenic. J Pathol 210: 334–343.
[31]  Sukhova GK, Zhang Y, Pan JH, Wada Y, Yamamoto T, et al. (2003) Deficiency of cathepsin S reduces atherosclerosis in LDL receptor-deficient mice. J Clin Invest 111: 897–906.
[32]  Rothermel BA, Hill JA (2008) Autophagy in load-induced heart disease. Circ Res 103: 1363–1369.
[33]  Kostin S, Pool L, Elsasser A, Hein S, Drexler HC, et al. (2003) Myocytes die by multiple mechanisms in failing human hearts. Circ Res 92: 715–724.
[34]  Knaapen MW, Davies MJ, De Bie M, Haven AJ, Martinet W, et al. (2001) Apoptotic versus autophagic cell death in heart failure. Cardiovasc Res 51: 304–312.
[35]  Nakai A, Yamaguchi O, Takeda T, Higuchi Y, Hikoso S, et al. (2007) The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress. Nat Med 13: 619–624.
[36]  Shintani T, Klionsky DJ (2004) Autophagy in health and disease: a double-edged sword. Science 306: 990–995.
[37]  Kuma A, Hatano M, Matsui M, Yamamoto A, Nakaya H, et al. (2004) The role of autophagy during the early neonatal starvation period. Nature 432: 1032–1036.
[38]  Zhu J, Dagda RK, Chu CT (2011) Monitoring mitophagy in neuronal cell cultures. Methods Mol Biol 793: 325–339.
[39]  De Meyer GR, Martinet W (2009) Autophagy in the cardiovascular system. Biochim Biophys Acta 1793: 1485–1495.
[40]  Ryter SW, Lee SJ, Smith A, Choi AM (2010) Autophagy in vascular disease. Proc Am Thorac Soc 7: 40–47.
[41]  Gustafsson AB, Gottlieb RA (2009) Autophagy in ischemic heart disease. Circ Res 104: 150–158.
[42]  Nishida K, Kyoi S, Yamaguchi O, Sadoshima J, Otsu K (2009) The role of autophagy in the heart. Cell Death Differ 16: 31–38.
[43]  Dada LA, Sznajder JI (2011) Mitochondrial Ca(2)+ and ROS take center stage to orchestrate TNF-alpha-mediated inflammatory responses. J Clin Invest 121: 1683–1685.
[44]  Huang CY, Fujimura M, Noshita N, Chang YY, Chan PH (2001) SOD1 down-regulates NF-kappaB and c-Myc expression in mice after transient focal cerebral ischemia. J Cereb Blood Flow Metab 21: 163–173.
[45]  Pieper GM, Olds C, Hilton G, Lindholm PF, Adams MB, et al. (2001) Antioxidant treatment inhibits activation of myocardial nuclear factor kappa B and inhibits nitrosylation of myocardial heme protein in cardiac transplant rejection. Antioxid Redox Signal 3: 81–88.
[46]  Bruckner AL (2004) Incontinentia pigmenti: a window to the role of NF-kappaB function. Semin Cutan Med Surg 23: 116–124.
[47]  Mehta PK, Griendling KK (2007) Angiotensin II cell signaling: physiological and pathological effects in the cardiovascular system. Am J Physiol Cell Physiol 292: C82–97.
[48]  Zheng T, Kang MJ, Crothers K, Zhu Z, Liu W, et al. (2005) Role of cathepsin S-dependent epithelial cell apoptosis in IFN-gamma-induced alveolar remodeling and pulmonary emphysema. J Immunol 174: 8106–8115.
[49]  Levine B, Kroemer G (2008) Autophagy in the pathogenesis of disease. Cell 132: 27–42.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133