全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

Retinal Axonal Loss Begins Early in the Course of Multiple Sclerosis and Is Similar between Progressive Phenotypes

DOI: 10.1371/journal.pone.0036847

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background To determine whether retinal axonal loss is detectable in patients with a clinically isolated syndrome (CIS), a first clinical demyelinating attack suggestive of multiple sclerosis (MS), and examine patterns of retinal axonal loss across MS disease subtypes. Methodology/Principal Findings Spectral-domain Optical Coherence Tomography was performed in 541 patients with MS, including 45 with high-risk CIS, 403 with relapsing-remitting (RR)MS, 60 with secondary-progressive (SP)MS and 33 with primary-progressive (PP)MS, and 53 unaffected controls. Differences in retinal nerve fiber layer (RNFL) thickness and macular volume were analyzed using multiple linear regression and associations with age and disease duration were examined in a cross-sectional analysis. In eyes without a clinical history of optic neuritis (designated as “eyes without optic neuritis”), the total and temporal peripapillary RNFL was thinner in CIS patients compared to controls (temporal RNFL by ?5.4 μm [95% CI ?0.9 to ?9.9 μm, p = 0.02] adjusting for age and sex). The total (p = 0.01) and temporal (p = 0.03) RNFL was also thinner in CIS patients with clinical disease for less than 1 year compared to controls. In eyes without optic neuritis, total and temporal RNFL thickness was nearly identical between primary and secondary progressive MS, but total macular volume was slightly lower in the primary progressive group (p<0.05). Conclusions/Significance Retinal axonal loss is increasingly prominent in more advanced stages of disease – progressive MS>RRMS>CIS – with proportionally greater thinning in eyes previously affected by clinically evident optic neuritis. Retinal axonal loss begins early in the course of MS. In the absence of clinically evident optic neuritis, RNFL thinning is nearly identical between progressive MS subtypes.

References

[1]  Trapp BD, Peterson J, Ransohoff RM, Rudick R, Mork S, et al. (1998) Axonal transection in the lesions of multiple sclerosis. N Engl J Med 338: 278–285.
[2]  Bitsch A, Schuchardt J, Bunkowski S, Kuhlmann T, Bruck W (2000) Acute axonal injury in multiple sclerosis. Correlation with demyelination and inflammation. Brain 123(Pt 6): 1174–1183.
[3]  Green AJ, McQuaid S, Hauser SL, Allen IV, Lyness R (2010) Ocular pathology in multiple sclerosis: retinal atrophy and inflammation irrespective of disease duration. Brain 133: 1591–1601.
[4]  Fisher E, Lee JC, Nakamura K, Rudick RA (2008) Gray matter atrophy in multiple sclerosis: a longitudinal study. Ann Neurol 64: 255–265.
[5]  Audoin B, Zaaraoui W, Reuter F, Rico A, Malikova I, et al. (2010) Atrophy mainly affects the limbic system and the deep grey matter at the first stage of multiple sclerosis. J Neurol Neurosurg Psychiatry 81: 690–695.
[6]  Wattjes MP, Harzheim M, Lutterbey GG, Klotz L, Schild HH, et al. (2007) Axonal damage but no increased glial cell activity in the normal-appearing white matter of patients with clinically isolated syndromes suggestive of multiple sclerosis using high-field magnetic resonance spectroscopy. AJNR Am J Neuroradiol 28: 1517–1522.
[7]  Brex PA, Jenkins R, Fox NC, Crum WR, O'Riordan JI, et al. (2000) Detection of ventricular enlargement in patients at the earliest clinical stage of MS. Neurology 54: 1689–1691.
[8]  Chen JT, Narayanan S, Collins DL, Smith SM, Matthews PM, et al. (2004) Relating neocortical pathology to disability progression in multiple sclerosis using MRI. Neuroimage 23: 1168–1175.
[9]  Chard DT, Griffin CM, Parker GJ, Kapoor R, Thompson AJ, et al. (2002) Brain atrophy in clinically early relapsing-remitting multiple sclerosis. Brain 125: 327–337.
[10]  Azevedo FA, Carvalho LR, Grinberg LT, Farfel JM, Ferretti RE, et al. (2009) Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. J Comp Neurol 513: 532–541.
[11]  Calabrese M, De Stefano N, Atzori M, Bernardi V, Mattisi I, et al. (2007) Detection of cortical inflammatory lesions by double inversion recovery magnetic resonance imaging in patients with multiple sclerosis. Arch Neurol 64: 1416–1422.
[12]  De Stefano N, Matthews PM, Filippi M, Agosta F, De Luca M, et al. (2003) Evidence of early cortical atrophy in MS: relevance to white matter changes and disability. Neurology 60: 1157–1162.
[13]  Davie CA, Hawkins CP, Barker GJ, Brennan A, Tofts PS, et al. (1994) Serial proton magnetic resonance spectroscopy in acute multiple sclerosis lesions. Brain 117(Pt 1): 49–58.
[14]  Frisen L, Hoyt WF (1974) Insidious atrophy of retinal nerve fibers in multiple sclerosis. Funduscopic identification in patients with and without visual complaints. Arch Ophthalmol 92: 91–97.
[15]  Blumenthal EZ, Parikh RS, Pe'er J, Naik M, Kaliner E, et al. (2009) Retinal nerve fibre layer imaging compared with histological measurements in a human eye. Eye (Lond) 23: 171–175.
[16]  Frohman E, Costello F, Zivadinov R, Stuve O, Conger A, et al. (2006) Optical coherence tomography in multiple sclerosis. Lancet Neurol 5: 853–863.
[17]  Fisher JB, Jacobs DA, Markowitz CE, Galetta SL, Volpe NJ, et al. (2006) Relation of visual function to retinal nerve fiber layer thickness in multiple sclerosis. Ophthalmology 113: 324–332.
[18]  Burkholder BM, Osborne B, Loguidice MJ, Bisker E, Frohman TC, et al. (2009) Macular volume determined by optical coherence tomography as a measure of neuronal loss in multiple sclerosis. Arch Neurol 66: 1366–1372.
[19]  Henderson AP, Trip SA, Schlottmann PG, Altmann DR, Garway-Heath DF, et al. (2008) An investigation of the retinal nerve fibre layer in progressive multiple sclerosis using optical coherence tomography. Brain 131: 277–287.
[20]  Pulicken M, Gordon-Lipkin E, Balcer LJ, Frohman E, Cutter G, et al. (2007) Optical coherence tomography and disease subtype in multiple sclerosis. Neurology 69: 2085–2092.
[21]  Costello F, Hodge W, Pan YI, Freedman M, DeMeulemeester C (2009) Differences in retinal nerve fiber layer atrophy between multiple sclerosis subtypes. J Neurol Sci 281: 74–79.
[22]  Serbecic N, Aboul-Enein F, Beutelspacher SC, Graf M, Kircher K, et al. (2010) Heterogeneous pattern of retinal nerve fiber layer in multiple sclerosis. High resolution optical coherence tomography: potential and limitations. PLoS One 5: e13877.
[23]  Kitsos G, Detorakis ET, Papakonstantinou S, Kyritsis AP, Pelidou SH (2011) Perimetric and peri-papillary nerve fibre layer thickness findings in multiple sclerosis. Eur J Neurol 18: 719–725.
[24]  Siepman TA, Bettink-Remeijer MW, Hintzen RQ (2010) Retinal nerve fiber layer thickness in subgroups of multiple sclerosis, measured by optical coherence tomography and scanning laser polarimetry. J Neurol 257: 1654–1660.
[25]  Talman LS, Bisker ER, Sackel DJ, Long DA, Galetta KM, et al. (2010) Longitudinal study of vision and retinal nerve fiber layer thickness in multiple sclerosis. Ann Neurol 67: 749–760.
[26]  Henderson AP, Altmann DR, Trip AS, Kallis C, Jones SJ, et al. (2010) A serial study of retinal changes following optic neuritis with sample size estimates for acute neuroprotection trials. Brain 133: 2592–2602.
[27]  Sepulcre J, Murie-Fernandez M, Salinas-Alaman A, Garcia-Layana A, Bejarano B, et al. (2007) Diagnostic accuracy of retinal abnormalities in predicting disease activity in MS. Neurology 68: 1488–1494.
[28]  Gordon-Lipkin E, Chodkowski B, Reich DS, Smith SA, Pulicken M, et al. (2007) Retinal nerve fiber layer is associated with brain atrophy in multiple sclerosis. Neurology 69: 1603–1609.
[29]  Outteryck O, Zephir H, Defoort S, Bouyon M, Debruyne P, et al. (2009) Optical coherence tomography in clinically isolated syndrome: no evidence of subclinical retinal axonal loss. Arch Neurol 66: 1373–1377.
[30]  Kallenbach K, Sander B, Tsakiri A, Wanscher B, Fuglo D, et al. (2011) Neither retinal nor brain atrophy can be shown in patients with isolated unilateral optic neuritis at the time of presentation. Mult Scler 17: 89–95.
[31]  Kiernan DF, Mieler WF, Hariprasad SM (2010) Spectral-domain optical coherence tomography: a comparison of modern high-resolution retinal imaging systems. Am J Ophthalmol 149: 18–31.
[32]  Parisi V, Manni G, Spadaro M, Colacino G, Restuccia R, et al. (1999) Correlation between morphological and functional retinal impairment in multiple sclerosis patients. Invest Ophthalmol Vis Sci 40: 2520–2527.
[33]  Polman CH, Reingold SC, Edan G, Filippi M, Hartung HP, et al. (2005) Diagnostic criteria for multiple sclerosis: 2005 revisions to the “McDonald Criteria”. Ann Neurol 58: 840–846.
[34]  Fisniku LK, Brex PA, Altmann DR, Miszkiel KA, Benton CE, et al. (2008) Disability and T2 MRI lesions: a 20-year follow-up of patients with relapse onset of multiple sclerosis. Brain 131: 808–817.
[35]  Kurtzke JF (1983) Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology 33: 1444–1452.
[36]  Costello F, Hodge W, Pan YI, Eggenberger E, Freedman MS (2010) Using retinal architecture to help characterize multiple sclerosis patients. Can J Ophthalmol 45: 520–526.
[37]  Kerrison JB, Flynn T, Green WR (1994) Retinal pathologic changes in multiple sclerosis. Retina 14: 445–451.
[38]  Rizzo JF III (2005) Embryology, Anatomy, and Physiology of the Afferent Visual Pathway. In: Miller NR, Newman NJ, Biousse V, Kerrison JB, editors. Walsh and Hoyt's Clinical Neuro-ophthalmology. Philadelphia: Lippincott Williams & Wilkins. pp. 3–82.
[39]  Evangelou N, Konz D, Esiri MM, Smith S, Palace J, et al. (2001) Size-selective neuronal changes in the anterior optic pathways suggest a differential susceptibility to injury in multiple sclerosis. Brain 124: 1813–1820.
[40]  Ganter P, Prince C, Esiri MM (1999) Spinal cord axonal loss in multiple sclerosis: a post-mortem study. Neuropathol Appl Neurobiol 25: 459–467.
[41]  Rosenberg SS, Kelland EE, Tokar E, De la Torre AR, Chan JR (2008) The geometric and spatial constraints of the microenvironment induce oligodendrocyte differentiation. Proc Natl Acad Sci U S A 105: 14662–14667.
[42]  Gourraud PA, McElroy JP, Caillier SJ, Johnson BA, Santaniello A, et al. (2011) Aggregation of multiple sclerosis genetic risk variants in multiple and single case families. Ann Neurol 69: 65–74.
[43]  Rovaris M, Bozzali M, Santuccio G, Ghezzi A, Caputo D, et al. (2001) In vivo assessment of the brain and cervical cord pathology of patients with primary progressive multiple sclerosis. Brain 124: 2540–2549.
[44]  Confavreux C, Vukusic S (2006) Natural history of multiple sclerosis: a unifying concept. Brain 129: 606–616.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133