全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

Rifampicin for Continuation Phase Tuberculosis Treatment in Uganda: A Cost-Effectiveness Analysis

DOI: 10.1371/journal.pone.0039187

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background In Uganda, isoniazid plus ethambutol is used for 6 months (6HE) during the continuation treatment phase of new tuberculosis (TB) cases. However, the World Health Organization (WHO) recommends using isoniazid plus rifampicin for 4 months (4HR) instead of 6HE. We compared the impact of a continuation phase using 6HE or 4HR on total cost and expected mortality from the perspective of the Ugandan national health system. Methodology/Principal Findings Treatment costs and outcomes were determined by decision analysis. Median daily drug price was US$0.115 for HR and US$0.069 for HE. TB treatment failure or relapse and mortality rates associated with 6HE vs. 4HR were obtained from randomized trials and systematic reviews for HIV-negative (46% of TB cases; failure/relapse –6HE: 10.4% vs. 4HR: 5.2%; mortality –6HE: 5.6% vs. 4HR: 3.5%) and HIV-positive patients (54% of TB cases; failure or relapse –6HE: 13.7% vs. 4HR: 12.4%; mortality –6HE: 16.6% vs. 4HR: 10.5%). When the initial treatment is not successful, retreatment involves an additional 8-month drug-regimen at a cost of $110.70. The model predicted a mortality rate of 13.3% for patients treated with 6HE and 8.8% for 4HR; average treatment cost per patient was predicted at $26.07 for 6HE and $23.64 for 4HR. These results were robust to the inclusion of MDR-TB as an additional outcome after treatment failure or relapse. Conclusions/Significance Combination therapy with 4HR in the continuation phase dominates 6HE as it is associated with both lower expected costs and lower expected mortality. These data support the WHO recommendation to transition to a continuation phase comprising 4HR.

References

[1]  WHO (2011) Global tuberculosis control 2011. Geneva: World Health Organization.
[2]  Fox W, Ellard GA, Mitchison DA (1999) Studies on the treatment of tuberculosis undertaken by the British Medical Research Council tuberculosis units, 1946–1986, with relevant subsequent publications. Int J Tuberc Lung Dis 3: S231–279.
[3]  WHO (1994 ) WHO Tuberculosis Programme: framework for effective tuberculosis control Geneva: World Health Organization. WHO/TB/94.179 WHO/TB/94.179.
[4]  Nunn P, Kibuga D, Gathua S, Brindle R, Imalingat A, et al. (1991) Cutaneous hypersensitivity reactions due to thiacetazone in HIV-1 seropositive patients treated for tuberculosis. Lancet 337: 627–630.
[5]  WHO (1991) Guidelines for tuberculosis treatment in adults and children in national tuberculosis programmes. Geneva: World Health Organization. WHO/TUB/91.161 WHO/TUB/91.161.
[6]  WHO (2003) Treatment of Tuberculosis: Guidelines for National Programmes. Geneva: World Health Organization. WHO/CDS/TB/2003.313. Geneva.
[7]  Jindani A, Nunn AJ, Enarson DA (2004) Two 8-month regimens of chemotherapy for treatment of newly diagnosed pulmonary tuberculosis: international multicentre randomised trial. Lancet 364: 1244–1251.
[8]  WHO (2010) Treatment of tuberculosis. Guidelines. Geneva: World Health Organization. WHO/HTM/TB/2009.420 WHO/HTM/TB/2009.420.
[9]  MOH Uganda Clinical Guidelines 2010 - National Guidelines on Management of Common Conditions. Ministry of Health, Republic of Uganda. Available at:http://health.go.ug/docs/ucg_2010.pdf Last accessed 03/11/2011.
[10]  WHO Tuberculosis country profile (Uganda).World Health Organization. Last accessed 10/10/2011.
[11]  Nunn AJ, Jindani A, Enarson DA (2011) Results at 30 months of a randomised trial of two 8-month regimens for the treatment of tuberculosis. Int J Tuberc Lung Dis 15: 741–745.
[12]  MOH (2010) Ministry of Health Manual of the National Tuberculosis and Leprosy Programme. Kampala: Ministry of Health, Uganda.
[13]  Jones-Lopez EC, Ayakaka I, Levin J, Reilly N, Mumbowa F, et al. (2011) Effectiveness of the standard WHO recommended retreatment regimen (category II) for tuberculosis in Kampala, Uganda: a prospective cohort study. PLoS Med 8: e1000427.
[14]  Lukoye D, Cobelens FG, Ezati N, Kirimunda S, Adatu FE, et al. (2011) Rates of anti-tuberculosis drug resistance in Kampala-Uganda are low and not associated with HIV infection. PLoS One 6: e16130.
[15]  Seung KJ, Omatayo DB, Keshavjee S, Furin JJ, Farmer PE, et al. (2009) Early outcomes of MDR-TB treatment in a high HIV-prevalence setting in Southern Africa. PLoS One 4: e7186.
[16]  MSH (2008) International Drug Price Indicator Guide. Cambridge, MA, USA: Management Sciences for Health.
[17]  Hermans SM, Castelnuovo B, Katabira C, Mbidde P, Lange JM, et al. (2012) Integration of HIV and TB services results in improved TB treatment outcomes and earlier, prioritized ART initiation in a large urban HIV clinic in Uganda. J Acquir Immune Defic Syndr. (in press).
[18]  MOH (2009) National Antiretroviral Treatment Guidelines for Adults, Adolescents and Children. Kampala: STD/AIDS Control Programme, Ministry of Health, Uganda.
[19]  Aspler A, Menzies D, Oxlade O, Banda J, Mwenge L, et al. (2008) Cost of tuberculosis diagnosis and treatment from the patient perspective in Lusaka, Zambia. Int J Tuberc Lung Dis 12: 928–935.
[20]  Kuznik A, Lamorde M, Sekavuga D, Picho B, Coutinho A Medical Male Circumcision for HIV/AIDS Prevention in Uganda – the Cost of Disposable versus Re-usable Circumcision Kits. Tropical Doctor 42: 5–7.
[21]  Khan FA, Minion J, Pai M, Royce S, Burman W, et al. (2010) Treatment of active tuberculosis in HIV-coinfected patients: a systematic review and meta-analysis. Clin Infect Dis 50: 1288–1299.
[22]  Temple B, Ayakaka I, Ogwang S, Nabanjja H, Kayes S, et al. (2008) Rate and amplification of drug resistance among previously-treated patients with tuberculosis in Kampala, Uganda. Clin Infect Dis 47: 1126–1134.
[23]  WHO (2008) Guidelines for the programmatic management of drug-resistant tuberculosis. Geneva: World Health Organization.
[24]  Johnston JC, Shahidi NC, Sadatsafavi M, Fitzgerald JM (2009) Treatment outcomes of multidrug-resistant tuberculosis: a systematic review and meta-analysis. PLoS One 4: e6914.
[25]  Tupasi TE, Gupta R, Quelapio MI, Orillaza RB, Mira NR, et al. (2006) Feasibility and cost-effectiveness of treating multidrug-resistant tuberculosis: a cohort study in the Philippines. PLoS Med 3: e352.
[26]  Menzies D, Benedetti A, Paydar A, Royce S, Madhukar P, et al. (2009) Standardized treatment of active tuberculosis in patients with previous treatment and/or with mono-resistance to isoniazid: a systematic review and meta-analysis. PLoS Med 6: e1000150.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133