Laboratory surveillance systems for salmonellosis should ideally be based on the rapid serotyping and subtyping of isolates. However, current typing methods are limited in both speed and precision. Using 783 strains and isolates belonging to 130 serotypes, we show here that a new family of DNA repeats named CRISPR (clustered regularly interspaced short palindromic repeats) is highly polymorphic in Salmonella. We found that CRISPR polymorphism was strongly correlated with both serotype and multilocus sequence type. Furthermore, spacer microevolution discriminated between subtypes within prevalent serotypes, making it possible to carry out typing and subtyping in a single step. We developed a high-throughput subtyping assay for the most prevalent serotype, Typhimurium. An open web-accessible database was set up, providing a serotype/spacer dictionary and an international tool for strain tracking based on this innovative, powerful typing and subtyping tool.
References
[1]
Voetsch AC, Van Gilder TJ, Angulo FJ, Farley MM, Shallow S, et al. (2004) FoodNet estimate of the burden of illness caused by nontyphoidal Salmonella infections in the United States. Clin Infect Dis: Suppl 3S127–134.
[2]
Fitzgerald C, Collins M, van Duyne S, Mikoleit M, Brown T, et al. (2007) Multiplex, bead-based suspension array for molecular determination of common Salmonella serogroups. J Clin Microbiol 45: 3323–3334.
[3]
Fisher IS, Enter-net participants (2004) International trends in Salmonella serotypes 1998–2003–a surveillance report from the Enter-net international surveillance network. Euro Surveill 9: 45–47.
[4]
Grimont PAD, Weill FX (2007) Antigenic formulae of the Salmonella serovars. 9th ed. Paris, France: WHO Collaborating Center for Reference and Research on Salmonella, Institut Pasteur website. 23: Available : http://www.pasteur.fr/ip/portal/action/W?ebdriveActionEvent/oid/01s-000036-089. Accessed 2012 Apr.
[5]
Bender JB, Hedberg CW, Boxrud DJ, Besser JM, Wicklund JH, et al. (2001) Use of molecular subtyping in surveillance for Salmonella enterica serotype Typhimurium. N Engl J Med 344: 189–195.
[6]
Anderson ES, Ward LR, Saxe MJ, de Sa JD (1977) Bacteriophage-typing designations of Salmonella typhimurium. J Hyg 78: 297–300.
[7]
Olsen JE, Skov MN, Threlfall EJ, Brown DJ (1994) Clonal lines of Salmonella enterica serotype Enteritidis documented by IS200-, ribo-, pulsed-field gel electrophoresis and RFLP typing. J Med Microbiol 40: 15–22.
[8]
Hedberg CW, Greenblatt JF, Matyas BT, Lemmings J, Sharp DJ, et al. (2008) Timeliness of enteric disease surveillance in 6 US states. Emerg Infect Dis 14: 311–313.
[9]
Lindstedt BA, Heir E, Gjernes E, Kapperud G (2003) DNA fingerprinting of Salmonella enterica subsp. enterica serovar Typhimurium with emphasis on phage type DT104 based on variable number of tandem repeat loci. J Clin Microbiol 41: 1469–1479.
[10]
van Belkum A, Tassios PT, Dijkshoorn L, Haeggman S, Cookson B, et al. (2007) Guidelines for the validation and application of typing methods for use in bacterial epidemiology. Clin Microbiol Infect: Suppl 31–46.
[11]
Torpdahl M, S?rensen G, Lindstedt BA, Nielsen EM (2007) Tandem repeat analysis for surveillance of human Salmonella Typhimurium infections. Emerg Infect Dis 13: 388–395.
[12]
Hopkins KL, Maguire C, Best E, Liebana E, Threlfall EJ (2007) Stability of multiple-locus variable-number tandem repeats in Salmonella enterica serovar Typhimurium. J Clin Microbiol 45: 3058–3061.
[13]
Hopkins KL, Peters TM, de Pinna E, Wain J (2011) Standardisation of multilocus variable-number tandem-repeat analysis (MLVA) for subtyping of Salmonella enterica serovar Enteritidis. Euro Surveill 16: pii. 19942 p.
[14]
Jansen R, Embden JD, Gaastra W, Schouls LM (2002) Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol 43: 1565–1575.
[15]
Grissa I, Vergnaud G, Pourcel C (2007) The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats. BMC Bioinformatics 8: 172.
[16]
Horvath P, Barrangou R (2010) CRISPR/Cas, the immune system of bacteria and archaea. Science 327: 167–170.
[17]
Kamerbeek J, Schouls L, Kolk A, van Agterveld M, van Soolingen D, et al. (1997) Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology. J Clin Microbiol 35: 907–914.
[18]
Pourcel C, Salvignol G, Vergnaud G (2005) CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology 151: 653–663.
[19]
Mokrousov I, Limeschenko E, Vyazovaya A, Narvskaya O (2007) Corynebacterium diphtheriae spoligotyping based on combined use of two CRISPR loci. Biotechnol J 2: 901–906.
[20]
Schouls LM, Reulen S, Duim B, Wagenaar JA, Willems RJ, et al. (2003) Comparative genotyping of Campylobacter jejuni by amplified fragment length polymorphism, multilocus sequence typing, and short repeat sequencing: strain diversity, host range, and recombination. J Clin Microbiol 41: 15–26.
[21]
Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, et al. (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315: 1709–1712.
[22]
Garneau JE, Dupuis Mè, Villion M, Romero DA, Barrangou R, et al. (2010) The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468: 67–71.
[23]
Touchon M, Rocha EP (2010) The small, slow and specialized CRISPR and anti-CRISPR of Escherichia and Salmonella. PLoS One 5: e11126.
[24]
Fricke WF, Mammel MK, McDermott PF, Tartera C, White DG, et al. (2011) Comparative genomics of 28 Salmonella enterica isolates: evidence for CRISPR-mediated adaptive sublineage evolution. J Bacteriol 193: 3556–3568.
[25]
Weill FX, Fabre-Berland L, Guibert V, Diancourt L, Brisse S (2007) Molecular typing and subtyping of Salmonella by identification of the variable nucleotide sequences of the CRISPR loci. French Patent Application (no. FR07/09188) filed on December 28, 2007. International Patent Application (no. PCT/IB2008/004004) filed on Dec. 29, 2008.
[26]
Liu F, Barrangou R, Gerner-Smidt P, Ribot EM, Knabel SJ, et al. (2011) Novel virulence gene and clustered regularly interspaced short palindromic repeat (CRISPR) multilocus sequence typing scheme for subtyping of the major serovars of Salmonella enterica subsp. enterica. Appl Environ Microbiol 77: 1946–1956.
[27]
Liu F, Kariyawasam S, Jayarao BM, Barrangou R, Gerner-Smidt P, et al. (2011) Subtyping Salmonella enterica serovar Enteritidis isolates from different sources by using sequence typing based on virulence genes and clustered regularly interspaced short palindromic repeats (CRISPRs). Appl Environ Microbiol 77: 4520–4526.
[28]
Haft DH, Selengut J, Mongodin EF, Nelson KE (2005) A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes. PLoS Comput Biol 1: e60.
[29]
Rousseau C, Gonnet M, Le Romancer M, Nicolas J (2009) CRISPI: a CRISPR interactive database. Bioinformatics 25: 3317–3318.
[30]
den Bakker HC, Moreno Switt AI, Govoni G, Cummings CA, Ranieri ML, et al. (2011) Genome sequencing reveals diversification of virulence factor content and possible host adaptation in distinct subpopulations of Salmonella enterica. BMC Genomics 12: 425.
[31]
Didelot X, Bowden R, Street T, Golubchik T, Spencer C, et al. (2011) Recombination and population structure in Salmonella enterica. PLoS Genet 7: e1002191.
[32]
Sangal V, Harbottle H, Mazzoni CJ, Helmuth R, Guerra B, et al. (2010) Evolution and population structure of Salmonella enterica serovar Newport. J. Bacteriol 192: 6465–6476.
[33]
Weill FX, Guesnier F, Guibert V, Timinouni M, Demartin M, et al. (2006) Multidrug resistance in Salmonella enterica serotype Typhimurium from humans in France (1993 to 2003). J Clin Microbiol 44: 700–708.
[34]
Kingsley RA, Msefula CL, Thomson NR, Kariuki S, Holt KE, et al. (2009) Epidemic multiple drug resistant Salmonella Typhimurium causing invasive disease in sub-Saharan Africa have a distinct genotype. Genome Res 19: 2279–2287.
[35]
Xia S, Hendriksen RS, Xie Z, Huang L, Zhang J, et al. (2009) Molecular characterization and antimicrobial susceptibility of Salmonella isolates from infections in humans in Henan Province, China. J Clin Microbiol 47: 401–409.
[36]
Bone A, Noel H, Le Hello S, Pihier N, Danan C, et al. (2010) Nationwide outbreak of Salmonella enterica serotype 4,12:i:- infections in France, linked to dried pork sausage, March-May 2010. Euro Surveill 15: 19592.
[37]
Wattiau P, Boland C, Bertrand S (2011) Methodologies for Salmonella enterica subsp. enterica subtyping: gold standards and alternatives. Appl Environ Microbiol 77: 7877–7885.
[38]
McQuiston JR, Waters RJ, Dinsmore BA, Mikoleit ML, Fields PI (2011) Molecular determination of H antigens of Salmonella by use of a microsphere-based liquid array. J Clin Microbiol 49: 565–573.
[39]
M. AchtmanJ. WainFX WeillS. NairZ. Zhou Multilocus sequence typing as a replacement for serotyping in Salmonella enterica . Plos Pathogens. In revision.
[40]
Roumagnac P, Weill FX, Dolecek C, Baker S, Brisse S, et al. (2006) Evolutionary history of Salmonella Typhi. Science 314: 1301–1304.
[41]
Larsson JT, Torpdahl M, Petersen RF, Sorensen G, Lindstedt BA, et al. (2009) Development of a new nomenclature for Salmonella typhimurium multilocus variable number of tandem repeats analysis (MLVA). Euro Surveill 14: 19174.
[42]
Hunter PR, Gaston MA (1988) Numerical index of the discriminatory ability of typing systems: an application of Simpson’s index of diversity. J Clin Microbiol 26: 2465–2466.
[43]
Zhang J, Abadia E, Refregier G, Tafaj S, Boschiroli ML, et al. (2010) Mycobacterium tuberculosis complex CRISPR genotyping: improving efficiency, throughput and discriminative power of ‘spoligotyping’ with new spacers and a microbead-based hybridization assay. J Med Microbiol 59: 285–294.