全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

Simple Ways to Measure Behavioral Responses of Drosophila to Stimuli and Use of These Methods to Characterize a Novel Mutant

DOI: 10.1371/journal.pone.0037495

Full-Text   Cite this paper   Add to My Lib

Abstract:

The behavioral responses of adult Drosophila fruit flies to a variety of sensory stimuli – light, volatile and non-volatile chemicals, temperature, humidity, gravity, and sound - have been measured by others previously. Some of those assays are rather complex; a review of them is presented in the Discussion. Our objective here has been to find out how to measure the behavior of adult Drosophila fruit flies by methods that are inexpensive and easy to carry out. These new assays have now been used here to characterize a novel mutant that fails to be attracted or repelled by a variety of sensory stimuli even though it is motile.

References

[1]  Borst A (2009) Drosophila's view on insect vision. Curr Biol 19: R36–R47.
[2]  Katz B, Minke B (2009) Drosophila photoreceptors and signaling mechanisms. Front Cell Neurosci 3: 1–18.
[3]  Hardie RC (2012) Phototransduction mechanisms in Drosophila microvillar photoreceptors. WIREs Membr Transp Signal 1: 162–187.
[4]  Vosshall LB, Stocker RF (2007) Molecular architecture of smell and taste in Drosophila. Annu Rev Neurosci 2007;30: 505–33.
[5]  Su C-Y, Menuz K, Carlson JR (2009) Olfactory perception: receptors, cells, and circuits. Cell 139: 45–59.
[6]  Benton R, Vannice KS, Gomez-Diaz C, Vosshall LB (2009) Variant ionotropic glutamate receptors as chemosensory receptors in Drosophila. Cell 136: 149–62.
[7]  Touhara K, Vosshall LB (2009) Sensing odorants and pheromones with chemosensory receptors. Annu Rev Physiol 271: 307–34.
[8]  Montell C (2009) A taste of the Drosophila gustatory receptors. Curr Opin Neurobiol 19: 345–53.
[9]  Weiss LA, Dahanukar A, Kwon JY, Banerjee D, Carlson JR (2011) The molecular and cellular basis of bitter taste in Drosophila. Neuron 69: 258–272.
[10]  Liu L, Li Y, Wang R, Yin C, Dong Q, et al. (2007) Drosophila hygrosensation requires the TRP channels water witch and nanchung. Nature 450: 294–8.
[11]  McKemy DD (2007) Temperature sensing across species. Eur J Physiol 454: 777–91.
[12]  Hamada FN, Rosenzweig M, Kang K, Pulver SR, Ghezzi A, et al. (2008) An internal thermal sensor controlling temperature preference in Drosophila. Nature 454: 217–22.
[13]  Rosenzweig M, Kang K, Garrity P (2008) Distinct TRP channels are required for warm and cool avoidance in Drosophila melanogaster. P Natl Acad Sci U S A 105: 14668–73.
[14]  Kamikouchi A, Inagaki HK, Effertz T, Hendrich O, Fiala A, et al. (2009) The neural basis of Drosophila gravity-sensing and hearing. Nature 458: 165–72.
[15]  Sun Y, Liu L, Ben-Shahar Y, Jacobs JS, Eberl DF, et al. (2009) TRPA channels distinguish gravity sensing from hearing in Johnston's organ. Proc Natl Acad Sci U S A 106: 13606–11.
[16]  Desroches CE, Busto M, Riedl CAL, Mackay TFC, Sokolowski MB (2010) Quantitative trait locus mapping of gravitaxis behaviour in Drosophila melanogaster. Genet Res Camb 92: 167–74.
[17]  Inagaki HK, Kamikouchi A, Ito K (2009) Methods for quantifying simple gravity sensing in Drosophila melanogaster. Nat Protoc 5: 20–25.
[18]  Kernan MJ (2007) Mechanotransduction and auditory transduction in Drosophila. Eur J Physiol 454: 703–20.
[19]  Martin I-R, Ernst R, Heisenberg M (1999) Temporal pattern of locomotor activity in Drosophila melanogaster. J Comp Physiol A 184: 73–84.
[20]  Carpenter FW (1905) The reactions of the pomace fly (Drosophila ampelophila loew) to light,gravity, and mechanical stimulation. Amer Nat 39: 157–71.
[21]  McEwen RS (1918) The reactions to light and to gravity in Drosophila and its mutants. J Exp Zool 25: 49–105.
[22]  Pak WL, Grossfield J, White NV (1969) Nonphototactc mutants in a study of vision of Drosophila. Nature 222: 351–354.
[23]  Pak WL (2010) Why Drosophila to study phototransduction? J Neurogenet 24: 55–66.
[24]  Leffelaar D, Grigliatti T (1984) Age-dependent behavior loss in adult Drosophila melanogaster. Dev Genet 4: 211–27.
[25]  Benzer S (1967) Behavioral mutants of Drosophila isolated by countercurrent distribution. Proc Natl Acad Sci U S A 58: 1112–9.
[26]  Heisenberg M (1972) Comparative behavioral studies on two visual mutants of Drosophila. J comp Physiol 80: 119–136.
[27]  Frechter S, Elia N, Tzarfaty V, Selinger Z, Minke B (2007) Translocation of Gq alpha mediates long-term adaptation in Drosophila photoreceptors. J Neurosci 27: 5571–5583.
[28]  Devaud J-M (2003) Experimental studies of adult Drosophila chemosensory behavior. Behav Proces 64: 177–196.
[29]  Anholt RRH, Fanara JJ, Fedorowicz GM, Ganguly I, Kulkarni NH, et al. (2001) Functional genomics of odor-guided behavior in Drosophila melanogaster. Chem Senses 26: 215–21.
[30]  McKenna M, Monte P, Helfand SL, Woodard C, Carlson J (1989) A simple chemosensory response in Drosophila and the isolation of acj mutants in which it is affected. Proc Natl Acad Sci U S A 86: 8118–22.
[31]  Borst A, Heisenberg M (1982) Osmotropotaxis in Drosophila melanogaster. J Comp Physiol A 147: 479–484.
[32]  Rodrigues V, Siddiqi O (1978) Genetic analysis of chemosensory pathway. Proc Indian Acad Sci 87 B: 147–60.
[33]  Dudai Y, Jan Y-N, Byers D, Quinn WG, Benzer S (1976) dunce, a mutant of Drosophila deficient in learning. Proc Natl Acad Sci USA 73: 1684–1688.
[34]  Tully T, Quinn WG (1985) Classical conditioning and retention in normal and mutant Drosophila melanogaster. J Comp Physiol A 157: 263–277.
[35]  Helfand SL, Carlson JR (1989) Isolation and characterization of an olfactory mutant in Drosophila with a chemically specified defect. Proc Natl Acad Sci USA 86: 2908–2912.
[36]  Woodard C, Huang T, Sun H, Helfand SL, Carlson J (1989) Genetic analysis of olfactory behavior in Drosophila: a new screen yields the ota mutants. Genet Soc Am 123: 315–26.
[37]  Tanimura T, Isono K, Takamura T, Shimada I (1982) Genetic dimorphism in the taste sensitivity to trehalose in Drosophila melanogaster. J Comp Physiol A 147: 433–7.
[38]  Ishimoto H, Tanimura T (2004) Molecular neurophysiology of taste in Drosophila. Cell Mol Life Sci 61: 10–18.
[39]  Amrein H, Thorne N (2005) Gustatory perception and behavior in Drosophila melanogaster. Curr Biol 15: R673–R684.
[40]  Falk R, Atidia J (1975) Mutation affecting taste perception in Drosophila melanogaster. Nature 254: 325–6.
[41]  Wang Z, Singhvi A, Kong P, Scott K (2004) Taste representations in the Drosophila brain. Cell 117: 981–91.
[42]  Inoshita T, Tanimura T (2006) Cellular identification of water gustatory receptor neurons and their central projection pattern in Drosophila. Proc Natl Acad Sci U S A 103: 1094–9.
[43]  Cameron P, Hiroi M, Ngai J, Scott K (2010) The molecular basis for water taste in Drosophila. Nature 465: 91–5.
[44]  Sayeed O, Benzer S (1996) Behavioral genetics of thermosensation and hygrosensation in Drosophila. Proc Natl Acad Sci U S A 93: 6079–84.
[45]  Xu SY, Cang CL, Liu XF, Peng YQ, Ye YZ, et al. (2006) Thermal nociception in adult Drosophila: behavioral characterization and the role of the painless gene. Genes, Brain Behav 5: 602–13.
[46]  Tempel BL, Livingstone MS, Quinn WG (1984) Mutations in the dopa decarboxylase gene affect learning in Drosophila. Proc Natl Acad Sci USA 81: 3577–81.
[47]  Hirsch J (1959) Studies in experimental behavior genetics: II. individual differences in geotaxis as a function of chromosome variations in synthesized Drosophila populations. J Comp Physiol Psychol 52: 304–8.
[48]  Toma DP, White KP, Hirsch J, Greenspan RJ (2002) Identification of genes involved in Drosophila melanogaster geotaxis, a complex behavioral trait. Nature 31: 349–53.
[49]  Armstrong JD, Texada MJ, Munjaal R, Baker DA, Beckingham KM (2006) Gravitaxis in Drosophila melanogaster: a forward genetic screen. Genes, Brain Behav 5: 222–39.
[50]  Strauss R, Heisenberg M (1993) A higher control center of locomotor behavior in the Drosophila brain. J Neurosci 13: 1852–61.
[51]  Bainton RJ, Tsai LT-Y, Singh CM, Moore MS, Neckameyer WS, et al. (2000) Dopamine modulates acute responses to cocaine, nicotine and ethanol in Drosophila. Curr Biol 10: 187–94.
[52]  Baker DA, Beckingham KM, Armstrong JD (2007) Functional dissection of the neural substrates for gravitaxic maze behavior in Drosophila melanogaster. J Comp Neurol 501: 756–64.
[53]  Adler J (2011) My life with nature. Ann Rev Biochem 80: 42–70.
[54]  Heisenberg M (1994) Central brain function in insects: Genetic studies on the mushroom bodies and central complex in Drosophila. Fortschritte der Zoologie. In: Schildberger K, Elsner N, editors. Neural Basis of Behavioural Adaptations. pp. 61–79. Gustav Fischer Verlag, Stuttgart, Jena, New York.
[55]  Heisenberg M, Boehl K (1979) Isolation of anatomical brain mutants of Drosophila by histological means. Z Naturforsch 34: 143–147.
[56]  Strauss R, Heisenberg M (1993) A higher control center of locomotor behavior in the Drosophila brain. J Neurosci 13: 1852–1861.
[57]  Strauss R (1995) A screen for EMS-induced X-linked locomotor mutants in Drosophila melanogaster. J Neurogenet 10: 53–54.
[58]  Strauss R (1955) Stumbling flies: A screen for X-linked locomotor mutants identifies new genes involved in the control and execution of walking in Drosophila melanogaster. In: Burrows M, Matheson T, Newlund PL, editors. Nervous Systems and Behavior. Proc 4th Int Congress Neuroethology. Stuttgart, New York: 22 p.
[59]  Martin J-R, Raabe T, Heisenberg M (1999) Central complex substructures are required for the maintenance of locomotor activity in Drosophila melanogaster. J Comp Physiol A 185: 277–288.
[60]  Strauss R (2002) The central complex and the genetic dissection of locomotor behaviour. Curr Opin Neurobiol 12: 633–638.
[61]  Poeck B, Triphan T, Neuser K, Strauss R (2008) Locomotor control by the central complex in Drosophila – An analysis of the tay bridge mutant. Develop Neurobiol 68: 1046–1058.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133