全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

Digits Lost or Gained? Evidence for Pedal Evolution in the Dwarf Salamander Complex (Eurycea, Plethodontidae)

DOI: 10.1371/journal.pone.0037544

Full-Text   Cite this paper   Add to My Lib

Abstract:

Change in digit number, particularly digit loss, has occurred repeatedly over the evolutionary history of tetrapods. Although digit loss has been documented among distantly related species of salamanders, it is relatively uncommon in this amphibian order. For example, reduction from five to four toes appears to have evolved just three times in the morphologically and ecologically diverse family Plethodontidae. Here we report a molecular phylogenetic analysis for one of these four-toed lineages – the Eurycea quadridigitata complex (dwarf salamanders) – emphasizing relationships to other species in the genus. A multilocus phylogeny reveals that dwarf salamanders are paraphyletic with respect to a complex of five-toed, paedomorphic Eurycea from the Edwards Plateau in Texas. We use this phylogeny to examine evolution of digit number within the dwarf?Edwards Plateau clade, testing contrasting hypotheses of digit loss (parallelism among dwarf salamanders) versus digit gain (re-evolution in the Edwards Plateau complex). Bayes factors analysis provides statistical support for a five-toed common ancestor at the dwarf-Edwards node, favoring, slightly, the parallelism hypothesis for digit loss. More importantly, our phylogenetic results pinpoint a rare event in the pedal evolution of plethodontid salamanders.

References

[1]  Lande R (1978) Evolutionary mechanisms of limb loss in tetrapods. Evolution 32: 73–92.
[2]  Galis F, van Alphen JJM, Metz JAJ (2001) Why five fingers? Evolutionary constraints on digit numbers. Trends in Ecology and Evolution 16: 637–646.
[3]  Young RL, Caputo V, Giovannotti M, Kohlsdorf T, Vargas AO (2009) Evolution of digit identity in the three-toed Italian skink Chalcides chalcides: a new case of digit identity frame shift. Evolution and Development 11: 647–658.
[4]  Wiens JJ, Brandley MC, Reeder TW (2006) Why does a trait evolve multiple times within a clade? Repeated evolution of snake-like body form in squamate reptiles. Evolution 60: 123–141.
[5]  Brandley MC, Huelsenbeck JP, Wiens JJ (2008) Rates and patterns in the evolution of snake-like body form in squamate reptiles: evidence for repeated evolution of lost digits and long-term persistence of intermediate body forms. Evolution 62: 2042–2064.
[6]  Kohlsdorf T, Wagner GP (2006) Evidence for the reversibility of digit loss: a phylogenetic study of limb evolution in Bachia (Gymnophthalmidae: Squamata). Evolution 60: 1896–1912.
[7]  Kohlsdorf T, Lynch VJ, Rodrigues MT, Brandley MT, Wagner GP (2010) Data and data interpretation in the study of limb evolution: a reply to Galis, et al. on the reevolution of digits in the lizard genus Bachia. Evolution 64: 2477–2485.
[8]  Siler CD, Brown RM (2011) Evidence for repeated acquisition and loss of complex body-form characters in an insular clade of southeast Asian semi-fossorial skinks. Evolution 65: 2641–2662.
[9]  Alberch P, Gale EA (1985) A developmental analysis of an evolutionary trend: digital reduction in amphibians. Evolution 39: 8–23.
[10]  Hanken J, Wake DB (1993) Miniaturization of body size: Organismal consequences and evolutionary significance. Annual Review of Ecology and Systematics 24: 501–519.
[11]  Hanken J (1983) Miniaturization and its effects on cranial morphology in plethodontid salamanders, genus Thorius (Amphibia: Plethodontidae). II. The fate of the brain and sense organs and their role in skull morphogenesis and evolution. Journal of Morphology 177: 255–268.
[12]  Roth G, Rottluff B, Grunwald W, Hanken J, Linke R (1990) Miniaturization in plethodontid salamanders (Caudata: Plethodontidae) and its consequences for the brain and visual system. Biological Journal of the Linnean Society 40: 165–190.
[13]  Wake DB (1991) Homoplasy: the result of natural selection, or evidence of design limitations? American Naturalist 138: 543–567.
[14]  Wake DB (2009) What salamanders have taught us about evolution. Annual Review of Ecology and Systematics 40: 333–352.
[15]  Wiens JJ, Hoverman JT (2008) Digit reduction, body size, and paedomorphosis in salamanders. Evolution and Development 10: 449–463.
[16]  Wagner GP, Khan PA, Blanco MJ, Misof B, Liversage RA (1999) Evolution of Hoxa-11 expression in amphibians: is the urodele autopodium an innovation? American Zoologist 39: 686–694.
[17]  Harrison JR, Guttman SI (2003) A new species of salamander (Caudata, Plethodontidae) from North and South Carolina. Southeastern Naturalist 2: 159–178.
[18]  Mittleman MB (1967) Manculus and M. quadridigitatus. Catalogue of American Amphibians and Reptiles 44.1–2:
[19]  Chippindale PT, Price AH, Wiens JJ, Hillis DM (2000) Phylogenetic relationships and systematic revision of central Texas hemidactyliine plethodontid salamanders. Herpetological Monographs 14: 1–80.
[20]  Camp C, Peterman W, Milanovich JR, Lamb T, Maerz JC, Wake DB (2009) A new genus and species of lungless salamander (family Plethodontidae) from the Appalachian highlands of the southeastern United States. Journal of Zoology, London 279: 86–94.
[21]  Vieites DR, Román SN, Wake MH, Wake DB (2011) A multigenic perspective on phylogenetic relationships in the largest family of salamanders, the Plethodontidae. Molecular Phylogenetics and Evolution 59: 623–635.
[22]  Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 24: 4876–4882.
[23]  Tanabe AS (2007) Kakusan: a computer program to automate the selection of a nucleotide substitution model and the configuration of a mixed model on multilocus data. Molecular Ecology Notes 7: 962–964.
[24]  Huelsenbeck JP, Ronquist FR (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754–755.
[25]  Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference of under mixed models. Bioinformatics 19: 1572–1574.
[26]  Nylander JAA, Wilgenbusch JC, Warren DL, Swofford DL (2008) AWTY (are we there yet?): a system for graphical exploration of MCMC convergence in Bayesian phylogenetics. Bioinformatics 24: 581–583.
[27]  Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: 2688–2690.
[28]  Stamatakis A, Blagojevic F, Nikolopoulos D, Antonopoulos C (2007) Exploring new search algorithms and hardware for phylogenetics: RAxML meets the IBM cell. Journal VLSI Signal Process 48: 271–286.
[29]  Stamatakis A, Hoover P, Rougemont J (2008) A rapid bootstrap algorithm for the RAxML web servers. Systematic Biology 57: 758–771.
[30]  Degnan JH, Rosenberg NA (2009) Gene tree discordance, phylogenetic inference, and the multispecies coalescent. Trends in Ecology and Evolution 24: 332–340.
[31]  Leaché AD, Rannala B (2011) The accuracy of species tree estimation under simulation: a comparison of methods. Systematic Biology 60: 126–137.
[32]  Ané C, Larget BR, Baum DA, Smith SD, Rokas A (2007) Bayesian estimation of concordance among gene trees. Molecular Biology and Evolution 24: 412–426.
[33]  Lui L (2008) BEST: Bayesian estimation of species trees under the coalescent model. Bioinformatics 24: 2542–2543.
[34]  Larget BR, Kotha SK, Dewey CN, Ané C (2010) BUCKy: Gene tree/species tree reconciliation with Bayesian concordance analysis. Bioinformatics 26: 2910–2911.
[35]  Pagel M, Meade A, Barker D (2004) Bayesian estimation of ancestral character states on phylogenies. Systematic Biology 53: 673–68.
[36]  Kass RE, Raftery AE (1995) Bayes factors. Journal of the American Statistical Association 90: 773–795.
[37]  Hillis DM, Chamberlain DA, Wilcox TP, Chippindale PT (2001) A new species of subterranean blind salamander (Plethodontidae: Hemidactyliini: Eurycea: Typhlomolge) from Austin, Texas, and a systematic revision of central Texas paedomorphic salamanders. Herpetologica 57: 266–280.
[38]  Wiens JJ, Chippindale PT, Hillis DM (2003) When are phylogenetic analyses misled by convergence? A case study in Texas cave salamanders. Systematic Biology 52: 501–514.
[39]  Masta S, Sullivan BK, Lamb T, Routman E (2002) Molecular systematics, hybridization and phylogeography of the Bufo americanus complex in eastern North America. Molecular Phylogenetics and Evolution 24: 302–314.
[40]  Weisrock DW, Kozak KH, Larson A (2005) Phylogeographic analysis of mitochondrial gene flow and introgression in the salamander, Plethodon shermani. Molecular Ecology 14: 1457–1472.
[41]  Chen W, Bi K, Fu J (2009) Frequent mitochondrial gene introgression among high elevation Tibetan megophryid frogs revealed by conflicting gene genealogies. Molecular Ecology 18: 2856–2876.
[42]  Bryson RW , Nieto-Montes de Oca A, Jaeger JR, Riddle BR (2010) Elucidation of cryptic diversity in a widespread Nearctic treefrog reveals episodes of mitochondrial gene capture as frogs diversified across a dynamic landscape. Evolution 64: 2315–2330.
[43]  Nevado B, Koblmüller S, Sturmbauer C, Snoeks J, Usano-Alemany J, Verheyen E (2008) Complete mitochondrial DNA replacement in a Lake Tanganyika cichlid fish. Molecular Ecology 18: 4240–4255.
[44]  Shubin N, Alberch P (1986) A morphogenetic approach to the origin and basic organization of the tetrapod limb. Evolutionary Biology 20: 319–387.
[45]  Shubin N, Wake DB (2003) Morphological variation, development, and evolution of the limb skeleton of salamanders. In: Heatwole H, Davies M, editors. Amphibian Biology, Vol. 5. Osteology. Surrey Beatty & Sons, Chipping Norton, Australia. pp. 1782–1808.
[46]  Roy S, Gardiner DM (2002) Cyclopamine induces digit loss in regenerating axolotl limbs. Journal of Experimental Zoology 293: 186–190.
[47]  Stopper GF, Wagner GP (2007) Inhibition of sonic hedgehog signaling leads to posterior digit loss in Ambystoma mexicanum: parallels to natural digit reduction in urodeles. Developmental Dynamics 236: 321–331.
[48]  Shapiro MD, Hanken J, Rosenthal N (2003) Developmental basis of evolutionary digit loss in the Australian lizard Hemiergis. Journal of Experimental Zoology 297: 48–56.
[49]  Litingtung Y, Dahn RD, Li Y, Fallon JF, Chiang C (2002) Shh and Gli3 are dispensable for limb skeleton formation but regulate digit number and identity. Nature 418: 979–983.
[50]  Gompel N, Prud’homme B (2009) The causes of repeated genetic evolution. Developmental Biology 332: 36–47.
[51]  Manceau M, Domingues VS, Linnen CR, Rosenblum EB, Hoekstra HE (2010) Convergence in pigmentation at multiple levels: mutations, genes and function. Philosophical Transactions of the Royal Society, B 365: 2439–2450.
[52]  Rosenblum EB, Rompler H, Schoneberg T, Hoekstra HE (2009) Same gene but different functional mechanisms underlie convergent adaptive phenotypes of White Sands lizards. Proceedings of the National Academy of Sciences United States of America 107: 2113–2117.
[53]  Steiner CC, Rompler H, Boettger LM, Schoneberg T, Hoekstra HE (2009) The genetic basis of phenotypic convergence in beach mice: similar pigment patterns but different genes. Molecular Biology and Evolution 26: 35–45.
[54]  Moritz C, Schneider C, Wake DB (1992) Evolutionary relationships within the Ensatina eschscholtzii complex confirm the ring species interpretation. Systematic Biology 41: 273–291.
[55]  Macey JR, Larson A, Ananjeva NB, Fang Z, Papenfuss TJ (1997) Two novel gene orders and the role of light-strand replication in rearrangement of the vertebrate mitochondrial genome. Molecular Biology and Evolution 14: 91–104.
[56]  Bickham JW, Lamb T, Minx T, Patton JC (1996) Molecular systematics of the genus Clemmys and the intergeneric relationships of emydid turtles. Herpetologica 52: 89–97.
[57]  Bonett RM, Chippindale PT, Moler PE, Van Devender RW, Wake DB (2009) Evolution of gigantism in amphiumid salamanders. PLoS ONE 4: e5615.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133