全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

Regulation of a Truncated Form of Tropomyosin-Related Kinase B (TrkB) by Hsa-miR-185* in Frontal Cortex of Suicide Completers

DOI: 10.1371/journal.pone.0039301

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background TrkB-T1 is a BDNF receptor lacking a tyrosine kinase domain that is highly expressed in astrocytes and regulates BDNF-evoked calcium transients. Previous studies indicate that downregulation of TrkB-T1 in frontal cortex may be involved in neurobiological processes underlying suicide. Methods In a microarray screening study (N = 8), we interrogated all known microRNA in the frontal cortex of suicide completers with low expression of TrkB-T1 and normal controls. These findings were validated and followed up in a larger sample of cases and controls (N = 55). Functional analyses included microRNA silencing, microRNA overexpression and luciferase assays to investigate specificity and to validate interactions between differentially expressed microRNA and TrkB-T1. Results MicroRNAs Hsa-miR-185* and Hsa-miR-491-3p were upregulated in suicide completers with low expression of TrkB.T1 (Pnominal: 9.10?5 and 1.8.10?4 respectively; FDR-corrected p = 0.031). Bioinformatic analyses revealed five putative binding sites for the DiGeorge syndrome linked microRNA Hsa-miR-185*in the 3′UTR of TrkB-T1, but none for Hsa-miR-491-3P. The increase of Hsa-miR-185* in frontal cortex of suicide completers was validated then confirmed in a larger, randomly selected group of suicide completers, where an inverse correlation between Hsa-miR-185* and TrkB-T1 expression was observed (R = ?0.439; p = 0.001). Silencing and overexpression studies performed in human cell lines confirmed the inverse relationship between hsa-mir-185* and trkB-T1 expression. Luciferase assays demonstrated that Hsa-miR-185* binds to sequences in the 3′UTR of TrkB-T1. Conclusion These results suggest that an increase of Hsa-miR-185* expression levels regulates, at least in part, the TrkB-T1 decrease observed in the frontal cortex of suicide completers and further implicate the 22q11 region in psychopathology.

References

[1]  World Health Organisation (2009) Country Report.
[2]  Anderson I, Crengle S, Kamaka ML, Chen TH, Palafox N, et al. (2006) Indigenous health in Australia, New Zealand, and the Pacific. Lancet 367: 1775–1785.
[3]  Boelle PY, Flahault A (1999) Suicide trends in France and UK. Lancet 353: 1364.
[4]  Hoven CW, Mandell DJ, Bertolote JM (2010) Prevention of mental ill-health and suicide: Public health perspectives. Eur Psychiatry.
[5]  Mann JJ (1998) The neurobiology of suicide. Nat Med 4: 25–30.
[6]  Murray CJ, Lopez AD (1997) Mortality by cause for eight regions of the world: Global Burden of Disease Study. Lancet 349: 1269–1276.
[7]  Okasha A (1999) Mental health in the Middle East: an Egyptian perspective. Clin Psychol Rev 19: 917–933.
[8]  Phillips MR, Li X, Zhang Y (2002) Suicide rates in China, 1995–99. Lancet 359: 835–840.
[9]  Kohli MA, Salyakina D, Pfennig A, Lucae S, Horstmann S, et al. (2010) Association of genetic variants in the neurotrophic receptor-encoding gene NTRK2 and a lifetime history of suicide attempts in depressed patients. Arch Gen Psychiatry 67: 348–359.
[10]  Dwivedi Y (2010) Brain-derived neurotrophic factor and suicide pathogenesis. Ann Med 42: 87–96.
[11]  Rose CR, Blum R, Pichler B, Lepier A, Kafitz KW, et al. (2003) Truncated TrkB-T1 mediates neurotrophin-evoked calcium signalling in glia cells. Nature 426: 74–78.
[12]  Ernst C, Deleva V, Deng X, Sequeira A, Pomarenski A, et al. (2009) Alternative splicing, methylation state, and expression profile of tropomyosin-related kinase B in the frontal cortex of suicide completers. Arch Gen Psychiatry 66: 22–32.
[13]  Ernst C, Nagy C, Kim S, Yang JP, Deng X, et al. (2011) Dysfunction of astrocyte connexins 30 and 43 in dorsal lateral prefrontal cortex of suicide completers. Biol Psychiatry 70: 312–319.
[14]  Araque A, Parpura V, Sanzgiri RP, Haydon PG (1999) Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci 22: 208–215.
[15]  Banasr M, Chowdhury GM, Terwilliger R, Newton SS, Duman RS, et al. (2010) Glial pathology in an animal model of depression: reversal of stress-induced cellular, metabolic and behavioral deficits by the glutamate-modulating drug riluzole. Mol Psychiatry 15: 501–511.
[16]  Miguel-Hidalgo JJ, Waltzer R, Whittom AA, Austin MC, Rajkowska G, et al. (2010) Glial and glutamatergic markers in depression, alcoholism, and their comorbidity. J Affect Disord 127: 230–240.
[17]  Valentine GW, Sanacora G (2009) Targeting glial physiology and glutamate cycling in the treatment of depression. Biochem Pharmacol 78: 431–439.
[18]  Seifert G, Schilling K, Steinhauser C (2006) Astrocyte dysfunction in neurological disorders: a molecular perspective. Nat Rev Neurosci 7: 194–206.
[19]  Ernst C, Chen ES, Turecki G (2009) Histone methylation and decreased expression of TrkB.T1 in orbital frontal cortex of suicide completers. Mol Psychiatry 14: 830–832.
[20]  Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116: 281–297.
[21]  Shenoy A, Blelloch R (2009) Genomic analysis suggests that mRNA destabilization by the microprocessor is specialized for the auto-regulation of Dgcr8. PLoS One 4: e6971.
[22]  Chendrimada TP, Gregory RI, Kumaraswamy E, Norman J, Cooch N, et al. (2005) TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 436: 740–744.
[23]  Spitzer RL, Williams JB, Gibbon M, First MB (1992) The Structured Clinical Interview for DSM-III-R (SCID). I: History, rationale, and description. Arch Gen Psychiatry 49: 624–629.
[24]  Dumais A, Lesage AD, Alda M, Rouleau G, Dumont M, et al. (2005) Risk factors for suicide completion in major depression: a case-control study of impulsive and aggressive behaviors in men. Am J Psychiatry 162: 2116–2124.
[25]  Lesage A, Seguin M, Guy A, Daigle F, Bayle MN, et al. (2008) Systematic services audit of consecutive suicides in New Brunswick: the case for coordinating specialist mental health and addiction services. Can J Psychiatry 53: 671–678.
[26]  Seguin M, Lesage A, Chawky N, Guy A, Daigle F, et al. (2006) Suicide cases in New Brunswick from April 2002 to May 2003: the importance of better recognizing substance and mood disorder comorbidity. Can J Psychiatry 51: 581–586.
[27]  American Psychiatric Association, American Psychiatric Association. Task Force on DSM-IV (1994) Diagnostic and statistical manual of mental disorders : DSM-IV. Washington, DC: American Psychiatric Association. xxvii, 886 p.
[28]  Mai JK, Paxinos G, Voss T (2007) Atlas of the human brain, 3rd Ed, Academic Press, pp 280.
[29]  Ritchie ME, Silver J, Oshlack A, Holmes M, Diyagama D, et al. (2007) A comparison of background correction methods for two-colour microarrays. Bioinformatics 23: 2700–2707.
[30]  Smyth GK, Speed T (2003) Normalization of cDNA microarray data. Methods 31: 265–273.
[31]  Miranda KC, Huynh T, Tay Y, Ang YS, Tam WL, et al. (2006) A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes. Cell 126: 1203–1217.
[32]  Duguay D, Belanger-Nelson E, Mongrain V, Beben A, Khatchadourian A, et al. (2011) Dynein Light Chain Tctex-Type 1 Modulates Orexin Signaling through Its Interaction with Orexin 1 Receptor. PLoS One 6: e26430.
[33]  Benjamini Y, Hochberg Y (1995) Controlling the False Discovery Rate: a practical and powerful approach to multiple testing. J R Statis Soc Series B 57: 289–300.
[34]  Larsson E, Fredlund Fuchs P, Heldin J, Barkefors I, Bondjers C, et al. (2009) Discovery of microvascular miRNAs using public gene expression data: miR-145 is expressed in pericytes and is a regulator of Fli1. Genome Med 1: 108.
[35]  Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75: 843–854.
[36]  Newman MA, Hammond SM (2010) Emerging paradigms of regulated microRNA processing. Genes Dev 24: 1086–1092.
[37]  Christensen M, Schratt GM (2009) microRNA involvement in developmental and functional aspects of the nervous system and in neurological diseases. Neurosci Lett 466: 55–62.
[38]  Inui M, Martello G, Piccolo S (2010) MicroRNA control of signal transduction. Nat Rev Mol Cell Biol 11: 252–263.
[39]  Slezak-Prochazka I, Durmus S, Kroesen BJ, van den Berg A (2010) MicroRNAs, macrocontrol: regulation of miRNA processing. RNA 16: 1087–1095.
[40]  Rossbach M (2010) Small non-coding RNAs as novel therapeutics. Curr Mol Med 10: 361–368.
[41]  Beezhold KJ, Castranova V, Chen F (2010) Microprocessor of microRNAs: regulation and potential for therapeutic intervention. Mol Cancer 9: 134.
[42]  Weinberg MS, Wood MJ (2009) Short non-coding RNA biology and neurodegenerative disorders: novel disease targets and therapeutics. Hum Mol Genet 18: R27–39.
[43]  Hannon GJ (2002) RNA interference. Nature 418: 244–251.
[44]  Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, et al. (2007) A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129: 1401–1414.
[45]  Purcell SM, Wray NR, Stone JL, Visscher PM, O’Donovan MC, et al. (2009) Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 460: 748–752.
[46]  Bassett AS, Marshall CR, Lionel AC, Chow EW, Scherer SW (2008) Copy number variations and risk for schizophrenia in 22q11.2 deletion syndrome. Hum Mol Genet 17: 4045–4053.
[47]  Mukai J, Dhilla A, Drew LJ, Stark KL, Cao L, et al. (2008) Palmitoylation-dependent neurodevelopmental deficits in a mouse model of 22q11 microdeletion. Nat Neurosci 11: 1302–1310.
[48]  Stark KL, Xu B, Bagchi A, Lai WS, Liu H, et al. (2008) Altered brain microRNA biogenesis contributes to phenotypic deficits in a 22q11-deletion mouse model. Nat Genet 40: 751–760.
[49]  Schratt G (2009) microRNAs at the synapse. Nat Rev Neurosci 10: 842–849.
[50]  Okamura K, Phillips MD, Tyler DM, Duan H, Chou YT, et al. (2008) The regulatory activity of microRNA* species has substantial influence on microRNA and 3′ UTR evolution. Nat Struct Mol Biol 15: 354–363.
[51]  Jazdzewski K, Liyanarachchi S, Swierniak M, Pachucki J, Ringel MD, et al. (2009) Polymorphic mature microRNAs from passenger strand of pre-miR-146a contribute to thyroid cancer. Proc Natl Acad Sci U S A 106: 1502–1505.
[52]  Bauer M, Kinkl N, Meixner A, Kremmer E, Riemenschneider M, et al. (2009) Prevention of interferon-stimulated gene expression using microRNA-designed hairpins. Gene Ther 16: 142–147.
[53]  Alvarez VA, Ridenour DA, Sabatini BL (2006) Retraction of synapses and dendritic spines induced by off-target effects of RNA interference. J Neurosci 26: 7820–7825.
[54]  Cao W, Hunter R, Strnatka D, McQueen CA, Erickson RP (2005) DNA constructs designed to produce short hairpin, interfering RNAs in transgenic mice sometimes show early lethality and an interferon response. J Appl Genet 46: 217–225.
[55]  Beveridge NJ, Gardiner E, Carroll AP, Tooney PA, Cairns MJ (2010) Schizophrenia is associated with an increase in cortical microRNA biogenesis. Mol Psychiatry 15: 1176–1189.
[56]  Wang B, Li S, Qi HH, Chowdhury D, Shi Y, et al. (2009) Distinct passenger strand and mRNA cleavage activities of human Argonaute proteins. Nat Struct Mol Biol 16: 1259–1266.
[57]  Krol J, Loedige I, Filipowicz W (2010) The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 11: 597–610.
[58]  Perron MP, Provost P (2009) Protein components of the microRNA pathway and human diseases. Methods Mol Biol 487: 369–385.
[59]  Du L, Schageman JJ, Subauste MC, Saber B, Hammond SM, et al. (2009) miR-93, miR-98, and miR-197 regulate expression of tumor suppressor gene FUS1. Mol Cancer Res 7: 1234–1243.
[60]  Gregersen LH, Jacobsen AB, Frankel LB, Wen J, Krogh A, et al. (2010) MicroRNA-145 targets YES and STAT1 in colon cancer cells. PLoS One 5: e8836.
[61]  Horie T, Ono K, Nishi H, Nagao K, Kinoshita M, et al. (2010) Acute doxorubicin cardiotoxicity is associated with miR-146a-induced inhibition of the neuregulin-ErbB pathway. Cardiovasc Res 87: 656–664.
[62]  Rademakers R, Eriksen JL, Baker M, Robinson T, Ahmed Z, et al. (2008) Common variation in the miR-659 binding-site of GRN is a major risk factor for TDP43-positive frontotemporal dementia. Hum Mol Genet 17: 3631–3642.
[63]  Smirnov DA, Cheung VG (2008) ATM gene mutations result in both recessive and dominant expression phenotypes of genes and microRNAs. Am J Hum Genet 83: 243–253.
[64]  Mazan-Mamczarz K, Gartenhaus RB (2007) Post-transcriptional control of the MCT-1-associated protein DENR/DRP by RNA-binding protein AUF1. Cancer Genomics Proteomics 4: 233–239.
[65]  Drury GL, Di Marco S, Dormoy-Raclet V, Desbarats J, Gallouzi IE (2010) FasL expression in activated T lymphocytes involves HuR-mediated stabilization. J Biol Chem 285: 31130–31138.
[66]  Morton S, Yang HT, Moleleki N, Campbell DG, Cohen P, et al. (2006) Phosphorylation of the ARE-binding protein DAZAP1 by ERK2 induces its dissociation from DAZ. Biochem J 399: 265–273.
[67]  Jain R, Devine T, George AD, Chittur SV, Baroni TE, et al. (2011) RIP-Chip analysis: RNA-Binding Protein Immunoprecipitation-Microarray (Chip) Profiling. Methods Mol Biol 703: 247–263.
[68]  George AD, Tenenbaum SA (2006) MicroRNA modulation of RNA-binding protein regulatory elements. RNA Biol 3: 57–59.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133