Background Anemia is a hematologic disorder with decreased number of erythrocytes. Erythropoiesis, the process by which red blood cells differentiate, are conserved in humans, mice and zebrafish. The only known agents available to treat pathological anemia are erythropoietin and its biologic derivatives. However, erythropoietin therapy elicits unwanted side-effects, high cost and intravenous or subcutaneous injection, warranting the development of a more cost effective and non-peptide alternative. Ginger (Zingiber officinale) has been widely used in traditional medicine; however, to date there is no scientific research documenting the potential of ginger to stimulate hematopoiesis. Methodology/Principal Findings Here, we utilized gata1:dsRed transgenic zebrafish embryos to investigate the effect of ginger extract on hematopoiesis in vivo and we identified its bioactive component, 10-gingerol. We confirmed that ginger and 10-gingerol promote the expression of gata1 in erythroid cells and increase the expression of hematopoietic progenitor markers cmyb and scl. We also demonstrated that ginger and 10-gingerol can promote the hematopoietic recovery from acute hemolytic anemia in zebrafish, by quantifying the number of circulating erythroid cells in the dorsal aorta using video microscopy. We found that ginger and 10-gingerol treatment during gastrulation results in an increase of bmp2b and bmp7a expression, and their downstream effectors, gata2 and eve1. At later stages ginger and 10-gingerol can induce bmp2b/7a, cmyb, scl and lmo2 expression in the caudal hematopoietic tissue area. We further confirmed that Bmp/Smad pathway mediates this hematopoiesis promoting effect of ginger by using the Bmp-activated Bmp type I receptor kinase inhibitors dorsomorphin, LND193189 and DMH1. Conclusions/Significance Our study provides a strong foundation to further evaluate the molecular mechanism of ginger and its bioactive components during hematopoiesis and to investigate their effects in adults. Our results will provide the basis for future research into the effect of ginger during mammalian hematopoiesis to develop novel erythropoiesis promoting agents.
References
[1]
Snyder A, Fraser ST, Baron MH (2004) Bone morphogenetic proteins in vertebrate hematopoietic development. J Cell Biochem 93: 224–232.
[2]
Grassinger J, Simon M, Mueller G, Drewel D, Andreesen R, et al. (2007) Bone morphogenetic protein (BMP)-7 but not BMP-2 and BMP-4 improves maintenance of primitive peripheral blood-derived hematopoietic progenitor cells (HPC) cultured in serum-free medium supplemented with early acting cytokines. Cytokine 40: 165–171.
[3]
Bhatia M, Bonnet D, Wu D, Murdoch B, Wrana J, et al. (1999) Bone morphogenetic proteins regulate the developmental program of human hematopoietic stem cells. J Exp Med 189: 1139–1148.
[4]
Schmerer M, Evans T (2003) Primitive erythropoiesis is regulated by Smad-dependent signaling in postgastrulation mesoderm. Blood 102: 3196–3205.
[5]
Burns CE, DeBlasio T, Zhou Y, Zhang J, Zon L, et al. (2002) Isolation and characterization of runxa and runxb, zebrafish members of the runt family of transcriptional regulators. Exp Hematol 30: 1381–1389.
[6]
Jin H, Xu J, Wen Z (2007) Migratory path of definitive hematopoietic stem/progenitor cells during zebrafish development. Blood 109: 5208–5214.
[7]
Shafizadeh E, Peterson RT, Lin S (2004) Induction of reversible hemolytic anemia in living zebrafish using a novel small molecule. Comp Biochem Physiol C Toxicol Pharmacol 138: 245–249.
[8]
Kishimoto Y, Lee KH, Zon L, Hammerschmidt M, Schulte-Merker S (1997) The molecular nature of zebrafish swirl: BMP2 function is essential during early dorsoventral patterning. Development 124: 4457–4466.
[9]
Lengerke C, Schmitt S, Bowman TV, Jang IH, Maouche-Chretien L, et al. (2008) BMP and Wnt specify hematopoietic fate by activation of the Cdx-Hox pathway. Cell Stem Cell 2: 72–82.
[10]
Tao S, Cai Y, Sampath K (2009) The Integrator subunits function in hematopoiesis by modulating Smad/BMP signaling. Development 136: 2757–2765.
[11]
Robin C, Durand C (2010) The roles of BMP and IL-3 signaling pathways in the control of hematopoietic stem cells in the mouse embryo. Int J Dev Biol 54: 1189–1200.
[12]
Galloway JL, Zon LI (2003) Ontogeny of hematopoiesis: examining the emergence of hematopoietic cells in the vertebrate embryo. Curr Top Dev Biol 53: 139–158.
Davidson AJ, Zon LI (2004) The ‘definitive’ (and ‘primitive’) guide to zebrafish hematopoiesis. Oncogene 23: 7233–7246.
[18]
Bertrand JY, Chi NC, Santoso B, Teng S, Stainier DY, et al. (2010) Haematopoietic stem cells derive directly from aortic endothelium during development. Nature 464: 108–111.
[19]
Kissa K, Herbomel P (2010) Blood stem cells emerge from aortic endothelium by a novel type of cell transition. Nature 464: 112–115.
[20]
Pimanda JE, Donaldson IJ, de Bruijn MF, Kinston S, Knezevic K, et al. (2007) The SCL transcriptional network and BMP signaling pathway interact to regulate RUNX1 activity. Proc Natl Acad Sci USA 104: 840–845.
[21]
Dooley KA, Davidson AJ, Zon LI (2005) Zebrafish scl functions independently in hematopoietic and endothelial development. Dev Biol 277: 522–536.
[22]
Bertrand JY, Kim AD, Violette EP, Stachura DL, Cisson JL, et al. (2007) Definitive hematopoiesis initiates through a committed erythromyeloid progenitor in the zebrafish embryo. Development 134: 4147–4156.
[23]
Detrich HW 3rd, Kieran MW, Chan FY, Barone LM, Yee K, et al (1995) Intraembryonic hematopoietic cell migration during vertebrate development. Proc Natl Acad Sci USA 92: 10713–10717.
[24]
Monteiro R, Pouget C, Patient R (2011) The gata1/pu.1 lineage fate paradigm varies between blood populations and is modulated by tif1γ. EMBO J 30: 1093–1103.
[25]
Boisset JC, van Cappellen W, Andrieu-Soler C, Galjart N, Dzierzak E, et al. (2010) In vivo imaging of hematopoietic cells emerging from the mouse aortic endothelium. Nature 464: 116–120.
[26]
Ciau-Uitz A, Pinheiro P, Gupta R, Enver T, Patient R (2010) Tel1/ETV6 specifies blood stem cells through the agency of VEGF signaling. Dev Cell 18: 569–578.
[27]
Murayama E, Kissa K, Zapata A, Mordelet E, Briolat V, et al. (2006) Tracing hematopoietic precursor migration to successive hematopoietic organs during zebrafish development. Immunity 25: 963–975.
[28]
Kalev-Zylinska ML, Horsfield JA, Flores MV, Postlethwait JH, Vitas MR, et al. (2002) Runx1 is required for zebrafish blood and vessel development and expression of a human RUNX1-CBF2T1 transgene advances a model for studies of leukemogenesis. Development 129: 2015–2030.
[29]
Ojewole JA (2006) Analgesic, antiinflammatory and hypoglycaemic effects of ethanol extract of Zingiber officinale (Roscoe) rhizomes (Zingiberaceae) in mice and rats. Phytother Res 20: 764–772.
[30]
Wohlmuth H, Leach DN, Smith MK, Myers SP (2005) Gingerol content of diploid and tetraploid clones of ginger (Zingiber officinale Roscoe). J Agric Food Chem 53: 5772–5778.
[31]
Sang S, Hong J, Wu H, Liu J, Yang CS, et al. (2009) Increased growth inhibitory effects on human cancer cells and anti-inflammatory potency of shogaols from Zingiber officinale relative to gingerols. J Agric Food Chem 57: 10645–10650.
[32]
Butt MS, Sultan MT (2011) Ginger and its health claims: molecular aspects. Crit Rev Food Sci Nutr 51: 383–393.
[33]
Long Q, Meng A, Wang H, Jessen JR, Farrell MJ, et al. (1997) GATA-1expression pattern can be recapitulated in living transgenic zebrafish using GFP reporter gene. Development 124: 4105–4111.
[34]
Fibach E, Prus E (2005) Differentiation of Human Erythroid Cells in Culture. Curr Protoc Immunol Supplement 69, Chapter 22, Unit 22F.7.
[35]
Hammerschmidt M, Pelegri F, Mullins MC, Kane DA, van Eeden FJ, et al. (1996) dino and mercedes, two genes regulating dorsal development in the zebrafish embryo. Development 123: 95–102.
[36]
Lee HX, Ambrosio AL, Reversade B, De Robertis EM (2006) Embryonic dorsal-ventral signaling: secreted frizzled-related proteins as inhibitors of tolloid proteinases. Cell 124: 147–159.
[37]
Dalgin G, Goldman DC, Donley N, Ahmed R, Eide CA, et al. (2007) GATA-2 functions downstream of BMPs and CaM KIV in ectodermal cells during primitive hematopoiesis. Dev Biol 310: 454–469.
[38]
Miller-Bertoglio VE, Fisher S, Sánchez A, Mullins MC, Halpern ME (1997) Differential regulation of chordin expression domains in mutant zebrafish. Dev Biol 192: 537–550.
[39]
Xu RH, Ault KT, Kim J, Park MJ, Hwang YS, et al. (1999) Opposite effects of FGF and BMP-4 on embryonic blood formation: roles of PV.1 and GATA-2. Dev Bio 208: 352–361.
[40]
Yu PB, Hong CC, Sachidanandan C, Babitt JL, Deng DY, et al. (2008) Dorsomorphin inhibits BMP signals required for embryogenesis and iron metabolism. Nat Chem Biol 4: 33–41.
[41]
Cannon JE, Upton PD, Smith JC, Morrell NW (2010) Intersegmental vessel formation in zebrafish: requirement for VEGF but not BMP signalling revealed by selective and non-selective BMP antagonists. Br J Pharmacol 161: 140–149.
[42]
Hao J, Ho JN, Lewis JA, Karim KA, Daniels RN, et al. (2010) In vivo structure-activity relationship study of dorsomorphin analogues identifies selective VEGF and BMP inhibitors. ACS Chem Biol 5: 245–253.
[43]
Wiley DM, Kim JD, Hao J, Hong CC, Bautch VL, et al. (2011) Distinct signalling pathways regulate sprouting angiogenesis from the dorsal aorta and the axial vein. Nat Cell Biol 13: 686–692.
[44]
Leung AY, Mendenhall EM, Kwan TT, Liang R, Eckfeldt C, et al. (2005) Characterization of expanded intermediate cell mass in zebrafish chordin morphant embryos. Dev Biol 277: 235–254.
[45]
Collery RF, Link BA (2011) Dynamic smad-mediated BMP signaling revealed through transgenic zebrafish. Dev Dyn 240: 712–722.
[46]
Wilkinson JM (2000) Effect of ginger tea on the fetal development of Sprague-Dawley rats. Reprod Toxicol 14: 507–512.
[47]
Traver D, Paw BH, Poss KD, Penberthy WT, Lin S, et al. (2003) Transplantation and in vivo imaging of multilineage engraftment in zebrafish bloodless mutants. Nat Immunol 4: 1238–1246.
[48]
Beis D, Bartman T, Jin SW, Scott IC, D’Amico LA, et al. (2005) Genetic and cellular analyses of zebrafish atrioventricular cushion and valve development. Development 132: 4193–4204.
[49]
Leung T, Chen H, Stauffer AM, Giger KE, Sinha S, et al. (2006) Zebrafish G protein gamma2 is required for VEGF signaling during angiogenesis. Blood 108: 160–166.
[50]
Leung T, Bischof J, S?ll I, Niessing D, Zhang D, et al. (2003) bozozok directly represses bmp2b transcription and mediates the earliest dorsoventral asymmetry of bmp2b expression in zebrafish. Development 130: 3639–3649.
[51]
Dick A, Hild M, Bauer H, Imai Y, Maifeld H, et al. (2000) Essential role of Bmp7 (snailhouse) and its prodomain in dorsoventral patterning of the zebrafish embryo. Development 127: 343–354.
[52]
Chesebro B, Wehrly K, Chesebro K, Portis J (1976) Characterization of Ia8 antigen, thy-1.2 antigen, complement receptors, and virus production in a group of murine virus-induced leukemia cell lines. J Immunol 117: 1267–1274.
[53]
Chesebro B, Wehrly K, Housman D (1978) Lack of erythroid characteristics in Ia-positive leukemia cell lines induced by Friend murine leukemia virus: brief communication. J Natl Cancer Inst 60: 239–242.