[1] | Darwin C (1877) On the various contrivances by which British and foreign orchids are fertilized by insects. New York: D. Appleton. 300 pp.
|
[2] | Stebbins GL (1970) Adaptive radiation of reproductive characteristics in Angiosperms, I: Pollination mechanism. Annual Review of Ecology, Evolution and Systematics 1: 307–326.
|
[3] | Endress PK (1994) Diversity and evolutionary biology of tropical flowers. Cambridge: Cambridge Univ Press. 511 pp.
|
[4] | Johnson SD, Steiner KE (2000) Generalization versus specialization in plant pollination systems. Trends in Ecology and Evolution 15: 140–143.
|
[5] | Nilsson LA, Jonsson L, Ralison L, Randrianjohany E (1987) Angraecoid orchids and hawkmoths in central Madagascar: specialized pollination systems and generalist foragers. Biotropica 19: 310–318.
|
[6] | Anderson B, Alexandersson R, Johnson SD (2010) Evolution and coexistence of pollination ecotypes in an African Gladiolus (Iridaceae). Evolution 64: 960–972.
|
[7] | Pauw A, Stofberg J, Waterman RJ (2009) Flies and flowers in Darwin’s race. Evolution 63: 268–279.
|
[8] | Agosta SJ, Janzen DH (2005) Body size distributions of large Costa Rican dry forest moths and the underlying relationship between plant and pollinator morphology. Oikos 108: 183–193.
|
[9] | Anderson B, Terblanche JS, Ellis AG (2010) Predictable patterns of trait mismatches between interacting plants and insects. BMC Evolutionary Biology 10: 204.
|
[10] | Wasserthal LT (1997) The pollinators of the Malagasy star orchids Angraecum sesquipedale, A. sororium and A. compactum and the evolution of extremely long spurs by pollinator shift. Botanica Acta 110: 343–359.
|
[11] | Whittall JB, Hodges SA (2007) Pollinator shifts drive increasingly long nectar spurs in columbine flowers. Nature 447: 706–710.
|
[12] | Rodríguez-Gironés MA, Santamaría L (2006) Models of optimal foraging and resource partitioning: deep corollas for long tongues. Behavioral Ecology 17: 905–910.
|
[13] | Rodríguez-Gironés MA, Santamaría L (2007) Resource Competition, Character Displacement, and the Evolution of Deep Corolla Tubes American Naturalist 170: 455–464.
|
[14] | Rodríguez-Gironés MA, Llandres AL (2008) Resource competition triggers the co-evolution of long tongues and deep corolla tubes. PLoS One 3: e2992. doi:10.1371/journal.pone.0002992.
|
[15] | Alexandersson R, Johnson SD (2002) Pollinator-mediated selection on floral tube length in a hawkmoth-pollinated Gladiolus (Iridaceae). Proceedings of the Royal Society Series B: Biological Sciences 269: 631–636.
|
[16] | Maad J, Alexandersson R (2004) Variable selection in Platanthera bifolia (Orchidaceae): phenotypic selection differed between sex functions in a drought year. Journal of Evolutionary Biology 17: 642–650.
|
[17] | Benitez-Vieyra S, Medina AM, Glinos E, Cocucci AA (2006) Pollinator-mediated selection on floral traits and size of floral display in Cyclopogon elatus, a sweat bee-pollinated orchid. Functional Ecology 20: 948–957.
|
[18] | Nilsson LA (1988) The evolution of flowers with deep corolla tubes. Nature 334: 147–149.
|
[19] | Robertson JL, Wyatt R (1990) Evidence for pollination ecotypes in the yellow-fringed orchid, Platanthera ciliaris. Evolution 44: 121–133.
|
[20] | Steiner KE, Whitehead VB (1990) Pollination adaptation to oil-secreting flowers - Rediviva and Diascia. Evolution 44: 1701–1707.
|
[21] | Johnson SD, Steiner KE (1997) Long-tongued fly pollination and evolution of floral spur length in the Disa draconis complex (Orchidaceae). Evolution 51: 45–53.
|
[22] | Maad J (2000) Phenotypic selection in hawkmoth-pollinated Platanthera bifolia: targets and fitness surfaces. Evolution 54: 112–123.
|
[23] | Creswell JE (1998) Stabilizing selection and the structural variability of flowers within species. Annals of Botany 81: 463–473.
|
[24] | Kingsolver JG, Pfennig DW (2007) Patterns and power of phenotypic selection in nature. BioScience 57: 561–572.
|
[25] | Hegland SJ, Nielsen A, Lázaro A, Bjerknes AL, Totland ? (2009) How does climate warming affect plant-pollinator interactions? Ecology Letters 12: 184–195.
|
[26] | Zhang ZQ, Kress WJ, Xie WJ, Ren PY, Gao JY, et al. (2011) Reproductive biology of two Himalayan alpine gingers (Roscoea spp., Zingiberaceae) in China: pollination syndrome and compensatory floral mechanisms. Plant Biology 13: 582–589.
|
[27] | Haber WA, Frankie GW (1989) A tropical hawkmoth community: Costa Rican dry forest Sphingidae. Biotropica 21: 155–172.
|
[28] | Darrault RO, Schlindwein C (2002) Esfingídeos (Lepidoptera, Sphingidae) no Tabuleiro Paraibano, nordeste do Brasil: abundancia, riqueza e rela?ao com plantas esfingófilas. Revista Brasileira de Zoología 19: 429–443.
|
[29] | Moré M, Kitching IJ, Cocucci AA (2005) Sphingidae: Esfíngidos de Argentina. Hawkmoths of Argentina. Buenos Aires, LOLA (Literature of Latin America). 166 pp.
|
[30] | Duarte Júnior JA, Schlindwein C (2005) Riqueza, abundancia e sazonalidade de Sphingidae (Lepidoptera) num fragmento de Mata Atlantica de Pernambuco, Brasil. Revista Brasileira de Zoología 22: 662–666.
|
[31] | Amorim FW, de Avila RS Jr, Camargo AJA, Vieira AL, Oliveira PE (2009) A hawkmoth crossroads? Species richness, seasonality and biogeographical affinities of Sphingidae in a Brazilian Cerrado. Journal of Biogeography 36: 662–674.
|
[32] | Singer RB, Cocucci AA (1997) Eye attached hemipollinaria in the hawkmoth and settling moth pollination of Habenaria (Orchidaceae): A study on functional morphology in 5 species from subtropical South America. Botanica Acta 110: 328–337.
|
[33] | Batista JAN, Bianchetti LB, Miranda ZJ (2006) A revision of Habenaria section Macroceratitae (Orchidaceae) in Brazil. Brittonia 58: 10–41.
|
[34] | Johnston MO (1991) Natural selection on floral traits in two species of Lobelia with different pollinators. Evolution 45: 1468–1479.
|
[35] | Zuur A, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. New York NY: Springer.
|
[36] | Lande R, Arnold SJ (1983) The measurement of selection on correlated characters. Evolution 37: 1210–1226.
|
[37] | Dixon PM (1993) Population sampling and bootstrapping in complex designs. In: Scheiner SM, Guretvich J, editors. pp. 290–318. Design and analysis of ecological experiments, New York: Chapman & Hall.
|
[38] | Gross J, Husband BC, Stewart SC (1998) Phenotypic selection in a natural population of Impatiens pallida Nutt. (Balsaminaceae). Journal of Evolutionary Biology 11: 589–609.
|
[39] | Benitez-Vieyra S, Ordano M, Fornoni J, Boege K, Domínguez CA (2010) Selection on signal-reward correlation: limits and opportunities to the evolution of deceit in Turnera ulmifolia L. Journal of Evolutionary Biology 23: 2760–2767.
|
[40] | Canty A, Ripley B (2011) boot: Bootstrap R (S-Plus) Functions. R package version 1.3–3.1.
|
[41] | R Development Core Team (2011) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Accessed on 05 Dec 2011.
|
[42] | Mitchell-Olds T, Shaw RG (1987) Regression analysis of natural selection: statistical inference and biological interpretation. Evolution 41: 1149–1161.
|
[43] | Brodie ED, Moore AJ, Janzen FJ (1995) Visualizing and quantifying natural selection. Trends in Ecology and Evolution 10: 313–318.
|
[44] | Schluter D (1988) Estimating the form of natural selection on a quantitative trait. Evolution 42: 849–861.
|
[45] | Wood SN (2006) Generalized Additive Models: An Introduction with R. Boca Raton: Chapman and Hall/CRC. 391 pp.
|
[46] | Wood SN (2008) Fast stable direct fitting and smoothness selection for generalized additive models. Journal of the Royal Statistical Society Series B: Statistical Methodology 70: 495–518.
|
[47] | Amorim FW, Galetto L, Sazima S (2012) Beyond the pollination syndrome: Nectar ecology and role of diurnal and nocturnal pollinators in the reproductive success of Inga sessilis (Fabaceae). Plant Biology. doi:10.1111/j.1438–8677.2012.00643.x.
|
[48] | Balkenius A, Kelber A, Balkenius C (2004) A model of selection between stimulus and place strategy in a hawkmoth. Adaptive Behavior 12: 21–35.
|
[49] | Armbruster WS, Hansen TF, Pélabon C, Pérez-Barrales R, Maad J (2009) The adaptive accuracy of flowers: measurement and microevolutionary patterns. Annals of Botany 103: 1529–1545.
|
[50] | Thompson JN (2005) The geographic mosaic of coevolution. Chicago: The University of Chicago Press. 443 pp.
|
[51] | Janzen DH (1986) Biogeography of an unexceptional place: what determines the saturniid and sphingid moth fauna of Santa Rosa National Park, Costa Rica, and what does it mean to conservation biology? Brenesia 25/26: 51–87.
|
[52] | Janzen DH (1993) Caterpillar seasonality in a Costa Rican dry forest. In: Stamps NE, Casey TM, editors. pp. 448–477. Caterpillars: ecological and evolutionary constraints on foraging, New York: Chapman & Hall.
|
[53] | Beck J, Kitching IJ, Linsenmair E (2006) Effects of habitat disturbance can be subtle yet significant: biodiversity of hawkmoth-assemblages (Lepidoptera: Sphingidae) in Southeast-Asia. Biodiversity and Conservation 15: 465–486.
|
[54] | Ignatov II, Janovec JP, Centeno P, Tobler MW, Grados J, et al. (2011) Patterns of richness, composition, and distribution of sphingid moths along an elevational gradient in the Andes-Amazon region of Southeastern Peru. Annals of the Entomological Society of America 104: 68–76.
|
[55] | Harder LD, Johnson SD (2009) Darwin’s beautiful contrivances: evolutionary and functional evidence for floral adaptation. New Phytologist 183: 530–545.
|
[56] | Schemske DW, Horovitz CC (1989) Temporal variation in selection on a floral character. Evolution 43: 461–464.
|
[57] | Siepielski A, DiBattista JD, Carlson SM (2009) It’s about time: the temporal dynamics of phenotypic selection in the wild. Ecology Letters 12: 1261–1276.
|
[58] | Pérez-Barrales R, Pino R, Albaladejo RG, Arroyo J (2009) Geographic variation of flower traits in Narcissus papyraceus (Amaryllidaceae): do pollinators matter? Journal of Biogeography 35: 1411–1422.
|
[59] | Colombo AF, Joly CA (2010) Brazilian Atlantic Forest lato sensu: the most ancient Brazilian forest, and a biodiversity hotspot, is highly threatened by climate change. Brazilian Journal of Biology 70: 697–708.
|
[60] | Kitching IJ, Smith CR, Blagoderov B, Sadler SJ, Young RPW, et al. (2011) CATE (Creating a Taxonomic E-Science). Sphingidae, Version 1.3. Accessed on 05 Dec 2011.
|