全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

De novo Transcriptome Assembly and SNP Discovery in the Wing Polymorphic Salt Marsh Beetle Pogonus chalceus (Coleoptera, Carabidae)

DOI: 10.1371/journal.pone.0042605

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background The salt marsh beetle Pogonus chalceus represents a unique opportunity to understand and study the origin and evolution of dispersal polymorphisms as remarkable inter-population divergence in dispersal related traits (e.g. wing development, body size and metabolism) has been shown to persist in face of strong homogenizing gene flow. Sequencing and assembling the transcriptome of P. chalceus is a first step in developing large scale genetic information that will allow us to further study the recurrent phenotypic evolution in dispersal traits in these natural populations. Methodology/Results We used the Illumina HiSeq2000 to sequence 37 Gbases of the transcriptome and performed de novo transcriptome assembly with the Trinity short read assembler. This resulted in 65,766 contigs, clustering into 39,393 unique transcripts (unigenes). A subset of 12,987 show similarity (BLAST) to known proteins in the NCBI database and 7,589 are assigned Gene Ontology (GO). Using homology searches we identified all reported genes involved in wing development, juvenile- and ecdysteroid hormone pathways in Tribolium castaneum. About half (56.7%) of the unique assembled genes are shared among three life stages (third-instar larva, pupa, and imago). We identified 38,141 single nucleotide polymorphisms (SNPs) in these unigenes. Of these SNPs, 26,823 (70.3%) were found in a predicted open reading frame (ORF) and 6,998 (18.3%) were nonsynonymous. Conclusions The assembled transcriptome and SNP data are essential genomic resources for further study of the developmental pathways, genetic mechanisms and metabolic consequences of adaptive divergence in dispersal power in natural populations.

References

[1]  Roff DA (1986) The Evolution of Wing Dimorphism in Insects. Evolution 40: 1009–1020.
[2]  Roff DA, Fairbairn DJ (2007) The evolution and genetics of migration in insects. Bioscience 57: 155–164.
[3]  Hendrickx F, Maelfait J-P, Desender K, Aviron S, Bailey D, et al. (2009) Pervasive effects of dispersal limitation on within- and among-community species richness in agricultural landscapes. Global Ecology and Biogeography 18: 607–616.
[4]  Kokko H, Lopez-Sepulcre A (2006) From individual dispersal to species ranges: Perspectives for a changing world. Science 313: 789–791.
[5]  Denno RE, Roderick GK, Peterson MA, Huberty AF, Dobel HG, et al. (1996) Habitat persistence underlies intraspecific variation in the dispersal strategies of planthoppers. Ecological Monographs 66: 389–408.
[6]  Dhuyvetter H, Gaublomme E, Desender K (2004) Genetic differentiation and local adaptation in the salt-marsh beetle Pogonus chalceus: a comparison between allozyme and microsatellite loci. Molecular Ecology 13: 1065–1074.
[7]  Van Dyck H, Matthysen E (1999) Habitat fragmentation and insect flight: a changing ‘design’ in a changing landscape? Trends in Ecology & Evolution 14: 172–174.
[8]  Ronce O (2007) How does it feel to be like a rolling stone? Ten questions about dispersal evolution. Annual Review of Ecology Evolution and Systematics 38: 231–253.
[9]  den Boer PJ (1968) Spreading of risk and the stabilization of animal numbers. Acta Biotheoretica 18: 165–194.
[10]  Roff DA (1994) Habitat Persistence and the Evolution of Wing Dimorphism in Insects. American Naturalist 144: 772–798.
[11]  McPeek MA, Holt RD (1992) The Evolution of Dispersal in Spatially and Temporally Varying Environments. American Naturalist 140: 1010–1027.
[12]  Holt RD, McPeek MA (1996) Chaotic population dynamics favors the evolution of dispersal. American Naturalist 148: 709–718.
[13]  Mathias A, Kisdi E, Olivieri I (2001) Divergent evolution of dispersal in a heterogeneous landscape. Evolution 55: 246–259.
[14]  Doebeli M, Ruxton GD (1997) Evolution of dispersal rates in metapopulation models: Branching and cyclic dynamics in phenotype space. Evolution 51: 1730–1741.
[15]  Orr HA (2005) The genetic theory of adaptation: A brief history. Nature Reviews Genetics 6: 119–127.
[16]  Michel AP, Sim S, Powell THQ, Taylor MS, Nosil P, et al. (2010) Widespread genomic divergence during sympatric speciation. Proceedings of the National Academy of Sciences of the United States of America 107: 9724–9729.
[17]  Hoekstra HE, Hirschmann RJ, Bundey RA, Insel PA, Crossland JP (2006) A single amino acid mutation contributes to adaptive beach mouse color pattern. Science 313: 101–104.
[18]  Steiner CC, Weber JN, Hoekstra HE (2007) Adaptive variation in beach mice produced by two interacting pigmentation genes. Plos Biology 5: 1880–1889.
[19]  West-Eberhard MJ (2005) Developmental plasticity and the origin of species differences. Proceedings of the National Academy of Sciences of the United States of America 102: 6543–6549.
[20]  Hoekstra HE, Coyne JA (2007) The locus of evolution: Evo devo and the genetics of adaptation. Evolution 61: 995–1016.
[21]  Van Straalen NM, Roelofs D (2006) An introduction to ecological genomics. New York: Oxford University Press. 307.
[22]  Barrett RDH, Schluter D (2008) Adaptation from standing genetic variation. Trends in Ecology & Evolution 23: 38–44.
[23]  Arendt J, Reznick D (2008) Convergence and parallelism reconsidered: what have we learned about the genetics of adaptation? Trends in Ecology & Evolution 23: 26–32.
[24]  Le Rouzic A, Carlborg O (2008) Evolutionary potential of hidden genetic variation. Trends in Ecology & Evolution 23: 33–37.
[25]  Gibson G, Dworkin I (2004) Uncovering cryptic genetic variation. Nature Reviews Genetics 5: 681–U611.
[26]  Stevens VM, Trochet A, Van Dyck H, Clobert J, Baguette M (2011) How is dispersal integrated in life histories: a quantitative analysis using butterflies. Ecology Letters 15: 74–86.
[27]  Desender K (1985) Wing polymorphism and reproductive biology in the halobiont carabid beetle Pogonus chalceus (Marsham) (Coleoptera, Carabidae). Biol Jb Dodonaea 53: 89–100.
[28]  Desender K (1987) Heritability Estimates for Different Morphological Traits Related to Wing Development and Body Size in the Halobiont and Wing Polymorphic Carabid Beetle Pogonus-Chalceus Marsham (Coleoptera, Carabidae). Acta Phytopathologica Et Entomologica Hungarica 22: 85–101.
[29]  Dhuyvetter H, Hendrickx F, Gaublomme E, Desender K (2007) Differentiation between two salt marsh beetle ecotypes: Evidence for ongoing speciation. Evolution 61: 184–193.
[30]  Desender K, Backeljau T, Delahaye K, De Meester L (1998) Age and size of European saltmarshes and the population genetic consequences for ground beetles. Oecologia 114: 503–513.
[31]  Abouheif E, Wray GA (2002) Evolution of the gene network underlying wing polyphenism in ants. Science 297: 249–252.
[32]  Weatherbee SD, Nijhout HF, Grunert LW, Halder G, Galant R, et al. (1999) Ultrabithorax function in butterfly wings and the evolution of insect wing patterns. Current Biology 9: 109–115.
[33]  Weihe U, Milán M, Cohen SM (2005) Drosophila Limb Development. In: Insect Development: Morphogenesis, Molting and Metamorphosis. first ed. Gilbert LI, editor. London, UK: Elsevier. 730.
[34]  Richards S, Gibbs RA, Weinstock GM, Brown SJ, Denell R, et al. (2008) The genome of the model beetle and pest Tribolium castaneum. Nature 452: 949–955.
[35]  Emlen DJ, Nijhout HF (1999) Hormonal control of male horn length dimorphism in the dung beetle Onthophagus taurus (Coleoptera : Scarabaeidae). Journal of Insect Physiology 45: 45–53.
[36]  Ishikawa A, Ogawa K, Gotoh H, Walsh TK, Tagu D, et al. (2012) Juvenile hormone titre and related gene expression during the change of reproductive modes in the pea aphid. Insect Molecular Biology 21: 49–60.
[37]  Zera AJ (2003) The endocrine regulation of wing polymorphism in insects: State of the art, recent surprises, and future directions. Integrative and Comparative Biology 43: 607–616.
[38]  Zera AJ (2007) Endocrine analysis in evolutionary-developmental studies of insect polymorphism: hormone manipulation versus direct measurement of hormonal regulators. Evolution & Development 9: 499–513.
[39]  Zera AJ, Denno RF (1997) Physiology and ecology of dispersal polymorphism in insects. Annual Review of Entomology 42: 207–230.
[40]  den Boer PJ (1970) On the significance of dispersal power for populations of carabid-beetles. Oecologia 4: 1–28.
[41]  den Boer PJ (1980) Wing polymorphism and dimorphism in ground beetles as stages in an evolutionary process (Coleoptera, Carabidae). Entomol Gen 6: 107–134.
[42]  Desender K (1988) Flight-Muscle Development and Dispersal in the Life-Cycle of Carabid Beetles. Annales De La Societe Royale Zoologique De Belgique 118: 78–79.
[43]  Theodorides K, De Riva A, Gomez-Zurita J, Foster PG, Vogler AP (2002) Comparison of EST libraries from seven beetle species: towards a framework for phylogenomics of the Coleoptera. Insect Molecular Biology 11: 467–475.
[44]  Song H, Sheffield NC, Cameron SL, Miller KB, Whiting MF (2010) When phylogenetic assumptions are violated: base compositional heterogeneity and among-site rate variation in beetle mitochondrial phylogenomics. Systematic Entomology 35: 429–448.
[45]  Hunt T, Bergsten J, Levkanicova Z, Papadopoulou A, John OS, et al. (2007) A comprehensive phylogeny of beetles reveals the evolutionary origins of a superradiation. Science 318: 1913–1916.
[46]  Sloan DB, Keller SR, Berardi AE, Sanderson BJ, Karpovich JF, et al. (2012) De novo transcriptome assembly and polymorphism detection in the flowering plant Silene vulgaris (Caryophyllaceae). Molecular Ecology Resources 12: 333–343.
[47]  Xue J, Bao Y-Y, Li B-l, Cheng Y-B, Peng Z-Y, et al. (2011) Transcriptome Analysis of the Brown Planthopper Nilaparvata lugens. Plos One 5.
[48]  Mittapalli O, Bai X, Mamidala P, Rajarapu SP, Bonello P, et al. (2010) Tissue-Specific Transcriptomics of the Exotic Invasive Insect Pest Emerald Ash Borer (Agrilus planipennis). Plos One 5.
[49]  Poelchau MF, Reynolds JA, Denlinger DL, Elsik CG, Armbruster PA (2011) A de novo transcriptome of the Asian tiger mosquito, Aedes albopictus, to identify candidate transcripts for diapause preparation. Bmc Genomics 12.
[50]  Turin H (2000) De Nederlandse loopkevers, verspreiding en oecologie (Coleoptera. Carabidae), Nederlandse Fauna3.: Nationaal Natuurhistorisch Museum Naturalis, KNNV Uitgeverij & EIS Nederland, Leiden.
[51]  Serrano J (1981) A Chromosome Study of Spanish Bembidiidae and Other Caraboidea (Coleoptera Adephaga). Genetica 57: 119–129.
[52]  Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, et al. (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology 29: 644-U130.
[53]  Schmieder R, Edwards R (2011) Fast Identification and Removal of Sequence Contamination from Genomic and Metagenomic Datasets. Plos One 6.
[54]  Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic Local Alignment Search Tool. Journal of Molecular Biology 215: 403–410.
[55]  Gotz S, Garcia-Gomez JM, Terol J, Williams TD, Nagaraj SH, et al. (2008) High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Research 36: 3420–3435.
[56]  Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, et al. (2000) Gene Ontology: tool for the unification of biology. Nature Genetics 25: 25–29.
[57]  Kim HS, Murphy T, Xia J, Caragea D, Park Y, et al. (2010) BeetleBase in 2010: revisions to provide comprehensive genomic information for Tribolium castaneum. Nucleic Acids Research 38: D437–D442.
[58]  Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, et al. (2004) Versatile and open software for comparing large genomes. Genome Biology 5.
[59]  Min XJ, Butler G, Storms R, Tsang A (2005) OrfPredictor: predicting protein-coding regions in EST-derived sequences. Nucleic Acids Research 33: W677–W680.
[60]  Tamura K, Peterson D, Peterson N, Stecher G, Nei M, et al. (2011) MEGA5: Molecular Evolutionary Genetics Analysis Using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Molecular Biology and Evolution 28: 2731–2739.
[61]  Brisson JA, Ishikawa A, Miura T (2010) Wing development genes of the pea aphid and differential gene expression between winged and unwinged morphs. Insect Molecular Biology 19: 63–73.
[62]  Belles X, Martin D, Piulachs MD (2005) The mevalonate pathway and the synthesis of juvenile hormone in insects. Annual Review of Entomology 181–199.
[63]  Warren JT, Petryk A, Marques G, Parvy JP, Shinoda T, et al. (2004) Phantom encodes the 25-hydroxylase of Drosophila melanogaster and Bombyx mori: a P450 enzyme critical in ecdysone biosynthesis. Insect Biochemistry and Molecular Biology 34: 991–1010.
[64]  Kanehisa M, Goto S (2000) KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Research 28: 27–30.
[65]  Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25: 1754–1760.
[66]  Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biology 10.
[67]  Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, et al. (2009) The Sequence Alignment/Map format and SAMtools. Bioinformatics 25: 2078–2079.
[68]  Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. Bmc Bioinformatics 12.
[69]  Li H (2011) A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27: 2987–2993.
[70]  Danecek P, Auton A, Abecasis G, Albers CA, Banks E, et al. (2011) The variant call format and VCFtools. Bioinformatics 27: 2156–2158.
[71]  Wilkin MB, Becker MN, Mulvey D, Phan I, Chao A, et al. (2000) Drosophila Dumpy is a gigantic extracellular protein required to maintain tension at epidermal-cuticle attachment sites. Current Biology 10: 559–567.
[72]  Bai X, Mamidala P, Rajarapu SP, Jones SC, Mittapalli O (2011) Transcriptomics of the Bed Bug (Cimex lectularius). Plos One 6.
[73]  Wang X-W, Luan J-B, Li J-M, Bao Y-Y, Zhang C-X, et al. (2010) De novo characterization of a whitefly transcriptome and analysis of its gene expression during development. Bmc Genomics 11.
[74]  Shen G-M, Dou W, Niu J-Z, Jiang H-B, Yang W-J, et al. (2011) Transcriptome Analysis of the Oriental Fruit Fly (Bactrocera dorsalis). Plos One 6.
[75]  O'Neil ST, Dzurisin JDK, Carmichael RD, Lobo NF, Emrich SJ, et al. (2010) Population-level transcriptome sequencing of nonmodel organisms Erynnis propertius and Papilio zelicaon. Bmc Genomics 11.
[76]  Colbourne JK, Pfrender ME, Gilbert D, Thomas WK, Tucker A, et al. (2011) The Ecoresponsive Genome of Daphnia pulex. Science 331: 555–561.
[77]  Karatolos N, Pauchet Y, Wilkinson P, Chauhan R, Denholm I, et al. (2011) Pyrosequencing the transcriptome of the greenhouse whitefly, Trialeurodes vaporariorum reveals multiple transcripts encoding insecticide targets and detoxifying enzymes. Bmc Genomics 12.
[78]  Gustavson E, Goldsborough AS, Ali Z, Kornberg TB (1996) The Drosophila engrailed and invected genes: Partners in regulation, expression and function. Genetics 142: 893–906.
[79]  Shigenobu S, Bickel RD, Brisson JA, Butts T, Chang CC, et al. (2010) Comprehensive survey of developmental genes in the pea aphid, Acyrthosiphon pisum: frequent lineage-specific duplications and losses of developmental genes. Insect Molecular Biology 19: 47–62.
[80]  Cohen B, McGuffin ME, Pfeifle C, Segal D, Cohen SM (1992) Apterous, a Gene Required for Imaginal Disk Development in Drosophila Encodes a Member of the Lim Family of Developmental Regulatory Proteins. Genes & Development 6: 715–729.
[81]  Theil EC (1987) Ferritin - Structure, Gene-Regulation, and Cellular Function in Animals, Plants, and Microorganisms. Annual Review of Biochemistry 56: 289–315.
[82]  Orino K, Lehman L, Tsuji Y, Ayaki H, Torti SV, et al. (2001) Ferritin and the response to oxidative stress. Biochemical Journal 357: 241–247.
[83]  Odum WE (1988) Comparative Ecology of Tidal Freshwater and Salt Marshes. Annual Review of Ecology and Systematics 19: 147–176.
[84]  Kawahara-Miki R, Tsuda K, Shiwa Y, Arai-Kichise Y, Matsumoto T, et al. (2011) Whole-genome resequencing shows numerous genes with nonsynonymous SNPs in the Japanese native cattle Kuchinoshima-Ushi. Bmc Genomics 12.
[85]  Eck SH, Benet-Pages A, Flisikowski K, Meitinger T, Fries R, et al. (2009) Whole genome sequencing of a single Bos taurus animal for single nucleotide polymorphism discovery. Genome Biology 10.
[86]  Kim J-I, Ju YS, Park H, Kim S, Lee S, et al. (2009) A highly annotated whole-genome sequence of a Korean individual. Nature 460: 1011–U1096.
[87]  Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J, et al. (2008) Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456: 53–59.
[88]  Levy S, Sutton G, Ng PC, Feuk L, Halpern AL, et al. (2007) The diploid genome sequence of an individual human. Plos Biology 5: 2113–2144.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133