Background The association between human leukocyte antigen (HLA) genes (located in the Major Histocompatibility Complex [MHC] region of chromosome 6p21) and NPC has been known for some time. Recently, two genome-wide association studies (GWAS) conducted in Taiwan and China confirmed that the strongest evidence for NPC association was mapped to the MHC region. It is still unclear, however, whether these findings reflect direct associations with Human Leukocyte Antigen (HLA) genes and/or to other genes in this gene-rich region. Methods To better understand genetic associations for NPC within the MHC region of chromosome 6, we conducted an evaluation that pooled two previously conducted NPC case-control studies in Taiwan (N = 591 cases and N = 521 controls). PCR-based genotyping was performed for 12 significant SNPs identified within 6p21 in the Taiwan NPC GWAS and for the HLA-A gene (exons 2 and 3). Findings After confirming homogeneity between the two studies, pooled odds ratios (OR) and 95% confidence intervals (CI) were estimated by logistic regression. We found that HLA-A (p-trend = 0.0006) and rs29232 (within the GABBR1 gene; p-trend = 0.005) were independent risk factors for NPC after adjustment for age, gender, study and each other. NPC risk was highest among individuals who were homozygous for the HLA-A*0207 risk allele and carriers of the rs29232 risk allele (A). Conclusion Our study suggests that most of the SNPs significantly associated with NPC from GWAS reflect previously identified HLA-A associations. An independent effect of rs29232 (GABBR1), however, remained, suggesting that additional genes within this region might be associated with NPC risk.
References
[1]
Bouvard V, Baan R, Straif K, Grosse Y, Secretan B, et al. (2009) A review of human carcinogens–Part B: biological agents. Lancet Oncol 10: 321–322.
[2]
IARC monographs on the evaluation of carcinogenic risks to humans. Vol. 70. Epstein-Barr virus and Kaposi's sarcoma herpesvirus/human herpesvirus 8. Lyon, France: IARC Press. 47–373.
[3]
Chien YC, Chen JY, Liu MY, Yang HI, Hsu MM, et al. (2001) Serologic markers of Epstein-Barr virus infection and nasopharyngeal carcinoma in Taiwanese men. N Engl J Med 345: 1877–1882.
[4]
Chien YC, Chen CJ (2003) Epidemiology and etiology of nasopharyngeal carcinoma: gene-environment interaction. Cancer Reviews: Asia-Pacific 1: 1–19.
[5]
Xiong W, Zeng ZY, Xia JH, Xia K, Shen SR, et al. (2004) A susceptibility locus at chromosome 3p21 linked to familial nasopharyngeal carcinoma. Cancer Res 64: 1972–1974.
[6]
Bei JX, Li Y, Jia WH, Feng BJ, Zhou G, et al. (2010) A genome-wide association study of nasopharyngeal carcinoma identifies three new susceptibility loci. Nat Genet 42: 599–603.
[7]
Tse KP, Su WH, Chang KP, Tsang NM, Yu CJ, et al. (2009) Genome-wide association study reveals multiple nasopharyngeal carcinoma-associated loci within the HLA region at chromosome 6p21.3. Am J Hum Genet 85: 194–203.
[8]
Hildesheim A, Apple RJ, Chen CJ, Wang SS, Cheng YJ, et al. (2002) Association of HLA class I and II alleles and extended haplotypes with nasopharyngeal carcinoma in Taiwan. J Natl Cancer Inst 94: 1780–1789.
[9]
Hildesheim A, Levine PH (1993) Etiology of nasopharyngeal carcinoma: a review. Epidemiol Rev 15: 466–485.
[10]
Yu KJ, Gao X, Chen CJ, Yang XR, Diehl SR, et al. (2009) Association of human leukocyte antigens with nasopharyngeal carcinoma in high-risk multiplex families in Taiwan. Hum Immunol 70: 910–914.
[11]
Li Y, Fu L, Wong AM, Fan YH, Li MX, et al. (2011) Identification of genes with allelic imbalance on 6p associated with nasopharyngeal carcinoma in southern Chinese. PLoS One 6: e14562.
[12]
Cheng YJ, Hildesheim A, Hsu MM, Chen IH, Brinton LA, et al. (1999) Cigarette smoking, alcohol consumption and risk of nasopharyngeal carcinoma in Taiwan. Cancer Causes Control 10: 201–207.
[13]
Hildesheim A, Anderson LM, Chen CJ, Cheng YJ, Brinton LA, et al. (1997) CYP2E1 genetic polymorphisms and risk of nasopharyngeal carcinoma in Taiwan. J Natl Cancer Inst 89: 1207–1212.
[14]
Lai MJ, Wen SH, Lin YH, Shyr MH, Lin PY, et al. (2010) Distributions of human leukocyte antigen-A, -B, and -DRB1 alleles and haplotypes based on 46,915 Taiwanese donors. Hum Immunol 71: 777–782.
[15]
Santamaria P, Lindstrom AL, Boyce-Jacino MT, Myster SH, Barbosa JJ, et al. (1993) HLA class I sequence-based typing. Hum Immunol 37: 39–50.
[16]
Helmberg W, Dunivin R, Feolo M (2004) The sequencing-based typing tool of dbMHC: typing highly polymorphic gene sequences. Nucleic Acids Res 32: W173–175.
[17]
Chen LC, Chen CC, Liang Y, Tsang NM, Chang YS, et al. (2011) A novel role for TNFAIP2: its correlation with invasion and metastasis in nasopharyngeal carcinoma. Mod Pathol 24: 175–184.
[18]
Sengupta S, den Boon JA, Chen IH, Newton MA, Dahl DB, et al. (2006) Genome-wide expression profiling reveals EBV-associated inhibition of MHC class I expression in nasopharyngeal carcinoma. Cancer Res 66: 7999–8006.
[19]
Gavioli R, Kurilla MG, de Campos-Lima PO, Wallace LE, Dolcetti R, et al. (1993) Multiple HLA A11-restricted cytotoxic T-lymphocyte epitopes of different immunogenicities in the Epstein-Barr virus-encoded nuclear antigen 4. J Virol 67: 1572–1578.
[20]
Tang M, Zeng Y, Poisson A, Marti D, Guan L, et al. (2010) Haplotype-dependent HLA susceptibility to nasopharyngeal carcinoma in a Southern Chinese population. Genes Immun 11: 334–342.