全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

Mood Disorders and Risk of Lung Cancer in the EAGLE Case-Control Study and in the U.S. Veterans Affairs Inpatient Cohort

DOI: 10.1371/journal.pone.0042945

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background Mood disorders may affect lung cancer risk. We evaluated this hypothesis in two large studies. Methodology/Principal Findings We examined 1,939 lung cancer cases and 2,102 controls from the Environment And Genetics in Lung cancer Etiology (EAGLE) case-control study conducted in Italy (2002–2005), and 82,945 inpatients with a lung cancer diagnosis and 3,586,299 person-years without a lung cancer diagnosis in the U.S. Veterans Affairs Inpatient Cohort (VA study), composed of veterans with a VA hospital admission (1969–1996). In EAGLE, we calculated odds ratios (ORs) and 95% confidence intervals (CI), with extensive adjustment for tobacco smoking and multiple lifestyle factors. In the VA study, we estimated lung cancer relative risks (RRs) and 95% CIs with time-dependent Poisson regression, adjusting for attained age, calendar year, hospital visits, time within the study, and related previous medical diagnoses. In EAGLE, we found decreased lung cancer risk in subjects with a personal history of mood disorders (OR: 0.59, 95% CI: 0.44–0.79, based on 121 lung cancer incident cases and 192 controls) and family history of mood disorders (OR: 0.62, 95% CI: 0.50–0.77, based on 223 lung cancer cases and 345 controls). The VA study analyses yielded similar results (RR: 0.74, 95% CI: 0.71–0.77, based on 2,304 incident lung cancer cases and 177,267 non-cancer person-years) in men with discharge diagnoses for mood disorders. History of mood disorders was associated with nicotine dependence, alcohol and substance use and psychometric scales of depressive and anxiety symptoms in controls for these studies. Conclusions/Significance The consistent finding of a relationship between mood disorders and lung cancer risk across two large studies calls for further research into the complex interplay of risk factors associated with these two widespread and debilitating diseases. Although we adjusted for smoking effects in EAGLE, residual confounding of the results by smoking cannot be ruled out.

References

[1]  Taioli E (2008) Gene-environment interaction in tobacco-related cancers. Carcinogenesis 29: 1467–1474.
[2]  Spiegel D, Giese-Davis J (2003) Depression and cancer: mechanisms and disease progression. Biol Psychiatry 54: 269–282.
[3]  Chida Y, Hamer M, Wardle J, Steptoe A (2008) Do stress-related psychosocial factors contribute to cancer incidence and survival? Nat Clin Pract Oncol 5: 466–475.
[4]  Gelenberg AJ (2010) The prevalence and impact of depression. J Clin Psychiatry 71: e06.
[5]  Mathers C, Fat D, Boerma J (2008) The global burden of disease: 2004 update: World Health Organization.
[6]  Breslau N, Peterson EL, Schultz LR, Chilcoat HD, Andreski P (1998) Major depression and stages of smoking. A longitudinal investigation. Arch Gen Psychiatry 55: 161–166.
[7]  Kendler KS, Neale MC, MacLean CJ, Heath AC, Eaves LJ, et al. (1993) Smoking and major depression. A causal analysis. Arch Gen Psychiatry 50: 36–43.
[8]  Brewer JK (2008) Behavioral genetics of the depression/cancer correlation: a look at the Ras oncogene family and the ‘cerebral diabetes paradigm’. J Mol Neurosci 35: 307–322.
[9]  Oerlemans ME, van den Akker M, Schuurman AG, Kellen E, Buntinx F (2007) A meta-analysis on depression and subsequent cancer risk. Clin Pract Epidemiol Ment Health 3: 29.
[10]  Gross AL, Gallo JJ, Eaton WW (2010) Depression and cancer risk: 24 years of follow-up of the Baltimore Epidemiologic Catchment Area sample. Cancer Causes Control 21: 191–199.
[11]  Hippisley-Cox J, Vinogradova Y, Coupland C, Parker C (2007) Risk of malignancy in patients with schizophrenia or bipolar disorder: nested case-control study. Arch Gen Psychiatry 64: 1368–1376.
[12]  Dalton SO, Mellemkjaer L, Olsen JH, Mortensen PB, Johansen C (2002) Depression and cancer risk: a register-based study of patients hospitalized with affective disorders, Denmark, 1969–1993. Am J Epidemiol 155: 1088–1095.
[13]  Haukka J, Sankila R, Klaukka T, Lonnqvist J, Niskanen L, et al. (2010) Incidence of cancer and antidepressant medication: record linkage study. Int J Cancer 126: 285–296.
[14]  Penninx BW, Guralnik JM, Pahor M, Ferrucci L, Cerhan JR, et al. (1998) Chronically depressed mood and cancer risk in older persons. J Natl Cancer Inst 90: 1888–1893.
[15]  Knekt P, Raitasalo R, Heliovaara M, Lehtinen V, Pukkala E, et al. (1996) Elevated lung cancer risk among persons with depressed mood. Am J Epidemiol 144: 1096–1103.
[16]  Kaplan GA, Reynolds P (1988) Depression and cancer mortality and morbidity: prospective evidence from the Alameda County study. J Behav Med 11: 1–13.
[17]  Goldacre MJ, Wotton CJ, Yeates D, Seagroatt V, Flint J (2007) Cancer in people with depression or anxiety: record-linkage study. Soc Psychiatry Psychiatr Epidemiol 42: 683–689.
[18]  Landi MT, Consonni D, Rotunno M, Bergen AW, Goldstein AM, et al. (2008) Environment And Genetics in Lung cancer Etiology (EAGLE) study: an integrative population-based case-control study of lung cancer. BMC Public Health 8: 203.
[19]  Boyko EJ, Koepsell TD, Gaziano JM, Horner RD, Feussner JR (2000) US Department of Veterans Affairs medical care system as a resource to epidemiologists. Am J Epidemiol 151: 307–314.
[20]  Van Dam NT, Earleywine M (2010) Validation of the Center for Epidemiologic Studies Depression Scale-Revised (CESD-R): Pragmatic depression assessment in the general population. Psychiatry Res
[21]  Brennan C, Worrall-Davies A, McMillan D, Gilbody S, House A (2010) The Hospital Anxiety and Depression Scale: a diagnostic meta-analysis of case-finding ability. J Psychosom Res 69: 371–378.
[22]  Fidler JA, Shahab L, West R (2011) Strength of urges to smoke as a measure of severity of cigarette dependence: comparison with the Fagerstrom Test for Nicotine Dependence and its components. Addiction 106: 631–638.
[23]  Lau JY, Eley TC (2010) The genetics of mood disorders. Annu Rev Clin Psychol 6: 313–337.
[24]  Burmeister M, McInnis MG, Zollner S (2008) Psychiatric genetics: progress amid controversy. Nat Rev Genet 9: 527–540.
[25]  Lieb J (2007) Antidepressants, prostaglandins and the prevention and treatment of cancer. Med Hypotheses 69: 684–689.
[26]  Sharma U, Roberts ES, Hollenberg PF (1996) Inactivation of cytochrome P4502B1 by the monoamine oxidase inhibitors R-(-)-deprenyl and clorgyline. Drug Metab Dispos 24: 669–675.
[27]  Toh S, Rodriguez LA, Hernandez-Diaz S (2007) Use of antidepressants and risk of lung cancer. Cancer Causes Control 18: 1055–1064.
[28]  Walker AJ, Card T, Bates TE, Muir K (2011) Tricyclic antidepressants and the incidence of certain cancers: a study using the GPRD. Br J Cancer 104: 193–197.
[29]  Drozdov I, Kidd M, Gustafsson BI, Svejda B, Joseph R, et al. (2009) Autoregulatory effects of serotonin on proliferation and signaling pathways in lung and small intestine neuroendocrine tumor cell lines. Cancer 115: 4934–4945.
[30]  Vicaut E, Laemmel E, Stucker O (2000) Impact of serotonin on tumour growth. Ann Med 32: 187–194.
[31]  Pratesi G, Cervi S, Balsari A, Bondiolotti G, Vicentini LM (1996) Effect of serotonin and nicotine on the growth of a human small cell lung cancer xenograft. Anticancer Res 16: 3615–3619.
[32]  Guo K, Ma Q, Wang L, Hu H, Li J, et al. (2009) Norepinephrine-induced invasion by pancreatic cancer cells is inhibited by propranolol. Oncol Rep 22: 825–830.
[33]  Fitzgerald PJ (2010) Testing whether drugs that weaken norepinephrine signaling prevent or treat various types of cancer. Clin Epidemiol 2: 1–3.
[34]  Jans LA, Riedel WJ, Markus CR, Blokland A (2007) Serotonergic vulnerability and depression: assumptions, experimental evidence and implications. Mol Psychiatry 12: 522–543.
[35]  Rao ML, Hawellek B, Papassotiropoulos A, Deister A, Frahnert C (1998) Upregulation of the platelet Serotonin2A receptor and low blood serotonin in suicidal psychiatric patients. Neuropsychobiology 38: 84–89.
[36]  DiMatteo MR, Lepper HS, Croghan TW (2000) Depression is a risk factor for noncompliance with medical treatment: meta-analysis of the effects of anxiety and depression on patient adherence. Arch Intern Med 160: 2101–2107.
[37]  de Girolamo G, Polidori G, Morosini P, Scarpino V, Reda V, et al. (2006) Prevalence of common mental disorders in Italy: results from the European Study of the Epidemiology of Mental Disorders (ESEMeD). Soc Psychiatry Psychiatr Epidemiol 41: 853–861.
[38]  Fawcett J, Scheftner W, Clark D, Hedeker D, Gibbons R, et al. (1987) Clinical predictors of suicide in patients with major affective disorders: a controlled prospective study. Am J Psychiatry 144: 35–40.
[39]  Diaz FJ, James D, Botts S, Maw L, Susce MT, et al. (2009) Tobacco smoking behaviors in bipolar disorder: a comparison of the general population, schizophrenia, and major depression. Bipolar Disord 11: 154–165.
[40]  Richardson C, Waldrop J (2003) Veterans: 2000 - Census 2000 Brief. Washington, DC: US Department of Commerce.
[41]  Hooper TI, Gackstetter GD, Leardmann CA, Boyko EJ, Pearse LA, et al. (2010) Early mortality experience in a large military cohort and a comparison of mortality data sources. Popul Health Metr 8: 15.
[42]  Angst J, Sellaro R (2000) Historical perspectives and natural history of bipolar disorder. Biol Psychiatry 48: 445–457.
[43]  Kessing L (1998) A comparison of ICD-8 and ICD-10 diagnoses of affective disorder -a case register study from Denmark. Eur Psychiatry 13: 342–345.
[44]  Breslow NE, Day NE (1987) Statistical methods in cancer research. Volume II–The design and analysis of cohort studies. IARC Sci Publ 1–406.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133