[1] | Jung C, Müller A (2009) Flowering time control and applications in plant breeding. Trends in Plant Science 14: 563–573. Available:http://www.ncbi.nlm.nih.gov/pubmed/19716?745. Accessed 4 January 2011.
|
[2] | Simpson G, Dean C (2002) Arabidopsis, the Rosetta stone of flowering time? Science 296: 285–289 doi:10.1126/science.296.5566.285.
|
[3] | Westerman J, Lawrence M (1970) Genotype-environment interaction and developmental regulation in Arabidopsis thaliana I. Inbred lines; Analysis. Heredity 25: 609–627. Available:http://www.nature.com/doifinder/10.1038/?hdy.1971.9.
|
[4] | Blázquez M (2000) Flower development pathways. Journal of Cell Science 113: 3547–3548.
|
[5] | Ehrenreich I, Hanzawa Y, Chou L, Roe J, Kover P, et al. (2009) Candidate gene association mapping of Arabidopsis flowering time. Genetics 183: 325–335 doi:10.1534/genetics.109.105189.
|
[6] | Fornara F, De Montaigu A, Coupland G (2010) SnapShot: control of flowering in Arabidopsis. Cell 141: 550–550.e2.
|
[7] | Liu C, Thong Z, Yu H (2009) Coming into bloom: the specification of floral meristems. Development 136: 3379–3391. Available:http://www.ncbi.nlm.nih.gov/pubmed/19783?733. Accessed 11 January 2011.
|
[8] | Song Y, Ito S, Imaizumi T (2010) Similarities in the circadian clock and photoperiodism in plants. Current Opinion in Plant Biology 13: 594–603. Available:http://www.pubmedcentral.nih.gov/article?render.fcgi?artid=2965781&tool=pmcentrez?&rendertype=abstract. Accessed 10 January 2011.
|
[9] | Izawa T, Takahashi Y, Yano M (2003) Comparative biology comes into bloom: genomic and genetic comparison of flowering pathways in rice and Arabidopsis. Current Opinion in Plant Biology 6: 113–120 doi:10.1016/S1369-5266(03)00014-1.
|
[10] | Tsuji H, Tamaki S, Komiya R, Shimamoto K (2008) Florigen and the photoperiodic control of flowering in rice. Rice 1: 25–35. Available:http://www.springerlink.com/index/10.100?7/s12284-008-9005-8. Accessed 9 March 2011.
|
[11] | Kong F, Liu B, Xia Z, Sato S, Kim BM, et al.. (2010) Two coordinately regulated homologs of FLOWERING LOCUS T are involved in the control of photoperiodic flowering in soybean. Plant physiology 154: 1220–1231. Available:http://www.pubmedcentral.nih.gov/article?render.fcgi?artid=2971601&tool=pmcentrez?&rendertype=abstract. Accessed 24 March 2011.
|
[12] | Andersen C, Jensen C, Petersen K (2004) Similar genetic switch systems might integrate the floral inductive pathways in dicots and monocots. Trends in Plant Science 9: 105–107 doi:10.1016/j.tplants.2004.01.002.
|
[13] | Cockram J, Jones H, Leigh F, O'Sullivan D, Powell W, et al.. (2007) Control of flowering time in temperate cereals: genes, domestication, and sustainable productivity. Journal of Experimental Botany 58: 1231–1244. Available:http://www.ncbi.nlm.nih.gov/pubmed/17420?173.
|
[14] | Colasanti J, Coneva V (2009) Mechanisms of floral induction in grasses: something borrowed, something new. Plant Physiology 149: 56–62. Available:http://www.ncbi.nlm.nih.gov/pubmed/19126?695.
|
[15] | Greenup A, Peacock W, Dennis E, Trevaskis B (2009) The molecular biology of seasonal flowering-responses in Arabidopsis and the cereals. Annals of Botany 103: 1165–1172. Available:http://www.ncbi.nlm.nih.gov/pubmed/19304?997.
|
[16] | Lagercrantz U (2009) At the end of the day: a common molecular mechanism for photoperiod responses in plants? Journal of Experimental Botany 60: 2501–2515.
|
[17] | Colasanti J, Muszynski M (2009) The maize floral transition. In: Bennetzen JL, Hake SC, editors. Handbook of Maize: Its Biology. New York, NY: Springer New York. 41–55. Available:http://www.springerlink.com/index/10.100?7/978-0-387-79418-1. Accessed 20 January 2011.
|
[18] | McSteen P, Laudencia-Chingcuanco D, Colasanti J (2000) A floret by any other name: control of meristem identity in maize. Trends in Plant Science 5: 61–66 doi:10.1016/S1360-1385(99)01541-1.
|
[19] | Meng X, Muszynski M, Danilevskaya O (2011) The FT-like ZCN8 gene functions as a floral activator and is involved in photoperiod sensitivity in maize. The Plant Cell 23: 942–960 doi:10.1105/tpc.110.081406.
|
[20] | Buckler E, Holland J, Bradbury P, Acharya C, Brown P, et al. (2009) The genetic architecture of maize flowering time. Science 325: 714–718.
|
[21] | Schnable P, Ware D, Fulton R, Stein J, Wei F, et al. (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326: 1112–1115.
|
[22] | Bonhomme R, Derieux M, Edmeades G (1994) Flowering of diverse maize cultivars in relation to temperature and photoperiod in multilocation field trials. Crop Science 34: 156–164.
|
[23] | Dijkhuis F (1956) Computation of heat unit accumulations in maize for practical application. Euphytica 5: 267–275.
|
[24] | Ferwerda F (1953) Methods to synchronize the flowering time of the components in crossing plots for the production of hybrid seed corn. Euphytica 2: 127–134.
|
[25] | Ritchie JT (1986) The CERES-Maize model. In: Jones CA, Kiniry JR, editors. CERES Maize: A simulation model of maize growth and development. Texas A&M Univ. Press, College Station, TX. 1–6.
|
[26] | Hammer GL, van Oosterom E, McLean G, Chapman SC, Broad I, et al.. (2010) Adapting APSIM to model the physiology and genetics of complex adaptive traits in field crops. Journal of experimental botany 61: 2185–2202. Available:http://www.ncbi.nlm.nih.gov/pubmed/20400?531. Accessed 9 March 2011.
|
[27] | Messina CD, Podlich D, Dong Z, Samples M, Cooper M (2010) Yield-trait performance landscapes: from theory to application in breeding maize for drought tolerance. Journal of Experimental Botany 62: 855–868. Available:http://www.ncbi.nlm.nih.gov/pubmed/21041?371. Accessed 18 November 2010.
|
[28] | Welch SM, Dong Z, Roe J, Das S (2005) Flowering time control: gene network modelling and the link to quantitative genetics. Australian Journal of Agricultural Research 56: 919–936. Available:http://www.publish.csiro.au/?paper=AR051?55.
|
[29] | Koduru P, Dong Z, Das S, Welch SM, Roe J, et al.. (2008) A multiobjective evolutionary-simplex hybrid approach for the optimization of differential equation models of gene networks. IEEE Transactions on Evolutionary Computation 12: 572–590. Available:http://ieeexplore.ieee.org/lpdocs/epic03?/wrapper.htm?arnumber=4469887.
|
[30] | Wilczek A, Roe J, Knapp M, Cooper M, Lopez-Gallego C, et al. (2009) Effects of genetic perturbation on seasonal life history plasticity. Science 323: 930–934.
|
[31] | Muszynski M, Dam T, Li B, Shirbroun D, Hou Z, et al. (2006) delayed flowering1 encodes a basic leucine zipper protein that mediates floral inductive signals at the shoot apex in maize. Plant Physiology 142: 1523–1536.
|
[32] | Danilevskaya O, Meng X, Selinger D, Deschamps S, Hermon P, et al.. (2008) Involvement of the MADS-box gene ZMM4 in floral induction and inflorescence development in maize. Plant Physiology 147: 2054–2069. Available:http://www.plantphysiol.org/cgi/content/?abstract/147/4/2054. Accessed 23 March 2011.
|
[33] | Chardon F, Virlon B, Moreau L, Falque M, Joets J, et al.. (2004) Genetic architecture of flowering time in maize as inferred from quantitative trait loci meta-analysis and synteny conservation with the rice genome. Genetics 168: 2169–2185. Available:http://www.pubmedcentral.nih.gov/article?render.fcgi?artid=1448716&tool=pmcentrez?&rendertype=abstract. Accessed 25 January 2011.
|
[34] | Coles N, McMullen M, Balint-Kurti P, Pratt R, Holland J (2010) Genetic control of photoperiod sensitivity in maize revealed by joint multiple population analysis. Genetics 184: 799–812. Available:http://www.pubmedcentral.nih.gov/article?render.fcgi?artid=2845347&tool=pmcentrez?&rendertype=abstract. Accessed 21 July 2010.
|
[35] | Salvi S, Castelletti S, Tuberosa R (2009) An updated consensus map for flowering time QTLs in maize. Maydica 54: 501–512.
|
[36] | Markelz N, Costich D, Brutnell T (2003) Photomorphogenic responses in maize seedling development. Plant Physiology 133: 1578–1591 doi:10.1104/pp.103.029694.quality.
|
[37] | Sheehan M, Farmer P, Brutnell T (2004) Structure and expression of maize phytochrome family homeologs. Genetics 167: 1395–1405. Available:http://www.pubmedcentral.nih.gov/article?render.fcgi?artid=1470959&tool=pmcentrez?&rendertype=abstract. Accessed 4 September 2010.
|
[38] | Sheehan M, Kennedy L, Costich D, Brutnell T (2007) Subfunctionalization of PhyB1 and PhyB2 in the control of seedling and mature plant traits in maize. The Plant Journal 49: 338–353. Available:http://www.ncbi.nlm.nih.gov/pubmed/17181?778. Accessed 9 September 2010.
|
[39] | Sawers RJH, Linley PJ, Gutierrez-marcos JF, Delli-bovi T, Farmer PR, et al. (2004) The Elm1 ( ZmHy2 ) gene of maize encodes a phytochromobilin synthase. Plant Physiology 136: 2771–2781 doi:10.1104/pp.104.046417.1.
|
[40] | Sawers RJH, Linley PJ, Farmer PR, Hanley NP, Costich DE, et al. (2002) elongated mesocotyl1, a phytochrome-deficient mutant of maize. Plant Physiology 130: 155–163 doi:10.1104/pp.006411.1.
|
[41] | Harmer SL, Hogenesch JB, Straume M, Chang HS, Han B, et al. (2000) 37. 2000. Orchestrated transcription of key pathways in Arabidopsis by the circadian clock. Science 290, 2110–2113. Science 290: 2110–2113.
|
[42] | McClung C (2010) A modern circadian clock in the common angiosperm ancestor of monocots and eudicots. BMC Biology 8: 55. Available:http://www.biomedcentral.com/1741-7007/8?/55.
|
[43] | Hayes K, Beatty M, Meng X, Simmons C, Habben J, et al.. (2010) Maize global transcriptomics reveals pervasive leaf diurnal rhythms but rhythms in developing ears are largely limited to the core oscillator. PloS ONE 5: e12887. Available:http://www.pubmedcentral.nih.gov/article?render.fcgi?artid=2944807&tool=pmcentrez?&rendertype=abstract. Accessed 9 March 2011.
|
[44] | Khan S, Rowe S, Harmon F (2010) Coordination of the maize transcriptome by a conserved circadian clock. BMC Plant Biology 10: 126. Available:http://www.ncbi.nlm.nih.gov/pubmed/20576?144.
|
[45] | Murakami M, Tago Y, Yamashino T, Mizuno T (2007) Comparative overviews of clock-associated genes of Arabidopsis thaliana and Oryza sativa. Plant Cell Physiology 48: 110–121.
|
[46] | Takata N, Saito S, Saito C, Uemura M (2010) Phylogenetic footprint of the plant clock system in angiosperms: evolutionary processes of pseudo-response regulators. BMC Evolutionary Biology 10: 126. Available:http://www.pubmedcentral.nih.gov/article?render.fcgi?artid=2887406&tool=pmcentrez?&rendertype=abstract.
|
[47] | Gaut B, Doebley J (1997) DNA sequence evidence for the segmental allotetraploid origin of maize. PNAS 94: 6809–6814. Available:http://www.pubmedcentral.nih.gov/article?render.fcgi?artid=21240&tool=pmcentrez&r?endertype=abstract.
|
[48] | Wang X, Wu L, Zhang S, Wu L, Ku L, et al.. (2011) Robust expression and association of ZmCCA1 with circadian rhythms in maize. Plant Cell Reports 30: 1261–1272. Available:http://www.ncbi.nlm.nih.gov/pubmed/21327?386. Accessed 9 March 2011.
|
[49] | Miller T, Muslin E, Dorweiler J (2008) A maize CONSTANS-like gene, conz1, exhibits distinct diurnal expression patterns in varied photoperiods. Planta 227: 1377–1388.
|
[50] | Hung H-Y, Shannon LM, Tian F, Bradbury PJ, Chen C, et al.. (2012) ZmCCT and the genetic basis of day-length adaptation underlying the postdomestication spread of maize. Proceedings of the National Academy of Sciences: 1–9. Available:http://www.pnas.org/cgi/doi/10.1073/pnas?.1203189109. Accessed 19 June 2012.
|
[51] | Samach A, Coupland G (2000) Time measurement and the control of flowering in plants. BioEssays 22: 38–47.
|
[52] | Sawa M, Nusinow DA, Kay SA, Imaizumi T (2007) FKF1 and GIGANTEA complex formation is required for daylength measurement in Arabidopsis. Science: 261–265.
|
[53] | Sawa M, Kay SA, Imaizumi T (2008) Photoperiodic flowering occurs under internal and external coincidence. Plant Signal Behavior 3: 269–271.
|
[54] | Turner A, Beales J, Faure S, Dunford R, Laurie D (2005) The pseudo-response regulator Ppd-H1 provides adaptation to photoperiod in barley. Science 310: 1031–1034. Available:http://www.ncbi.nlm.nih.gov/pubmed/16284?181. Accessed 23 March 2011.
|
[55] | Izawa T, Oikawa T, Sugiyama N, Tanisaka T, Yano M, et al. (2002) Phytochrome mediates the external light signal to repress FT orthologs in photoperiodic flowering of rice. Genes & Development 16: 2006–2020.
|
[56] | Hayama R, Yokoi S, Tamaki S, Yano M, Shimamoto K (2003) Adaptation of photoperiodic control pathways produces short-day flowering in rice. Nature 422: 719–722. Available:http://www.ncbi.nlm.nih.gov/pubmed/12700?762.
|
[57] | Hayama R, Agashe B, Luley E, King R, Coupland G (2007) A circadian rhythm set by dusk determines the expression of FT homologs and the short-day photoperiodic flowering response in Pharbitis. Plant cell 19: 2988–3000. Available:http://www.pubmedcentral.nih.gov/article?render.fcgi?artid=2174708&tool=pmcentrez?&rendertype=abstract. Accessed 7 August 2010.
|
[58] | Wu C, You C, Li C, Long T, Chen G, et al. (2008) RID1, encoding a Cys2/His2-type zinc finger transcription factor, acts as a master switch from vegetative to floral development in rice. PNAS 105: 12915–12920.
|
[59] | Park SJ, Kim S, Lee S, Je B, Piao H, et al.. (2008) Rice Indeterminate 1 (OsId1) is necessary for the expression of Ehd1 (Early heading date 1) regardless of photoperiod. The Plant Journal 56: 1018–1029. Available:http://www.ncbi.nlm.nih.gov/pubmed/18774?969. Accessed 18 December 2010.
|
[60] | Matsubara K, Yamanouchi U, Wang Z-X, Minobe Y, Izawa T, et al.. (2008) Ehd2, a rice ortholog of the maize INDETERMINATE1 gene, promotes flowering by up-regulating Ehd1. Plant Physiology 148: 1425–1435. Available:http://www.pubmedcentral.nih.gov/article?render.fcgi?artid=2577255&tool=pmcentrez?&rendertype=abstract. Accessed 9 March 2011.
|
[61] | Higgins JA, Bailey PC, Laurie DA (2010) Comparative genomics of flowering time pathways using Brachypodium distachyon as a model for the temperate grasses. PloS one 5: e10065. Available:http://www.pubmedcentral.nih.gov/article?render.fcgi?artid=2856676&tool=pmcentrez?&rendertype=abstract. Accessed 15 August 2010.
|
[62] | Colasanti J, Yuan Z, Sundaresan V (1998) The indeterminate gene encodes a zinc finger protein and regulates a leaf-generated signal required for the transition to flowering in maize. Cell 93: 593–603. Available:http://www.ncbi.nlm.nih.gov/pubmed/96049?34.
|
[63] | Wong A, Colasanti J (2007) Maize floral regulator protein INDETERMINATE1 is localized to developing leaves and is not altered by light or the sink/source transition. Journal of Experimental Botany 58: 403–414. Available:http://www.ncbi.nlm.nih.gov/pubmed/17307?745. Accessed 9 March 2011.
|
[64] | Coneva V, Zhu T, Colasanti J (2007) Expression differences between normal and indeterminate1 maize suggest downstream targets of ID1, a floral transition regulator in maize. Journal of Experimental Botany 58: 3679–3693. Available:http://www.ncbi.nlm.nih.gov/pubmed/17928?372. Accessed 9 March 2011.
|
[65] | van Nocker S, Muszynski M, Briggs K, Amasino R (2000) Characterization of a gene from Zea mays related to the Arabidopsis flowering-time gene LUMINIDEPENDENS. Plant Molecular Biology 44: 107–122. Available:http://www.ncbi.nlm.nih.gov/pubmed/11094?985.
|
[66] | Lee I, Aukerman M, Gore S, Lohman K, Michaels S, et al. (1994) Isolation of LUMINIDEPENDENS: a gene involved in the control of flowering time in Arabidopsis. Plant Cell 6: 75–83.
|
[67] | Strable J, Borsuk L, Nettleton D, Schnable P, Irish E (2008) Microarray analysis of vegetative phase change in maize. The Plant Journal 56: 1045–1057 doi:10.1111/j.1365-313X.2008.03661.x.
|
[68] | Kiniry JR, Rosenthal WD, Jackson BS, Hoogenboom G (1991) Predicting leaf development of crop plants. In: Hodges T, editor. Predicting crop phenology. Boca Raton, Florida: CRC Press. 29–42.
|
[69] | van Esbroeck GA, Ruiz Corral JA, Sanchez Gonzalez JJ, Holland JB (2008) A comparison of leaf appearance rates among teosinte, maize landraces and modern maize. Maydica 53: 117–123.
|
[70] | Lauter N, Kampani A, Carlson S, Goebel M, Moose S (2005) microRNA172 down-regulates glossy15 to promote vegetative phase change in maize. PNAS 102: 9412–9417.
|
[71] | Amasino R, Michaels S (2010) The timing of flowering. Plant Physiology 154: 516–520. Available:http://www.pubmedcentral.nih.gov/article?render.fcgi?artid=2948982&tool=pmcentrez?&rendertype=abstract. Accessed 9 March 2011.
|
[72] | Poethig R (2010) The past, present, and future of vegetative phase change. Plant Physiology 154: 541–544. Available:http://www.pubmedcentral.nih.gov/article?render.fcgi?artid=2949024&tool=pmcentrez?&rendertype=abstract. Accessed 4 February 2011.
|
[73] | Zhang L, Chia J-M, Kumari S, Stein J, Liu Z, et al.. (2009) A genome-wide characterization of microRNA genes in maize. PLoS Genetics 5: e1000716. Available:http://www.ncbi.nlm.nih.gov/pubmed/19936?050.
|
[74] | Wu G, Poethig R (2006) Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its target SPL3. Development 133: 3539–3547. Available:http://www.pubmedcentral.nih.gov/article?render.fcgi?artid=1610107&tool=pmcentrez?&rendertype=abstract. Accessed 17 January 2011.
|
[75] | Yang L, Conway S, Poethig R (2011) Vegetative phase change is mediated by a leaf-derived signal that represses the transcription of miR156. Development 138: 245–249. Available:http://www.ncbi.nlm.nih.gov/pubmed/21148?189. Accessed 15 December 2010.
|
[76] | Aukerman M, Sakai H (2003) Regulation of flowering time and floral organ identity by a microRNA and its APETALA2 -Like target genes. Plant Cell 15: 2730–2741 doi:10.1105/tpc.016238.pression.
|
[77] | Salvi S, Sponza G, Morgante M, Tomes D, Niu X, et al. (2007) Conserved noncoding genomic sequences associated with a flowering-time quantitative trait locus in maize. PNAS 104: 11376–11381.
|
[78] | Zhu Q-H, Helliwell C (2011) Regulation of flowering time and floral patterning by miR172. Journal of Experimental Botany 62: 487–495. Available:http://www.ncbi.nlm.nih.gov/pubmed/20952?628. Accessed 14 December 2010.
|
[79] | Peng J, Richards D, Hartley N, Murphy G, Devos K, et al.. (1999) “Green revolution" genes encode mutant gibberellin response modulators. Nature 400: 256–261. Available:http://www.ncbi.nlm.nih.gov/pubmed/10421?366.
|
[80] | Lawit SJ, Wych HM, Xu D, Kundu S, Tomes DT (2010) Maize DELLA proteins dwarf plant8 and dwarf plant9 as modulators of plant development. Plant & Cell Physiology 51: 1854–1868. Available:http://www.ncbi.nlm.nih.gov/pubmed/20937?610. Accessed 4 January 2011.
|
[81] | Andersen J, Schrag T, Melchinger A, Zein I, Lubberstedt T (2005) Validation of Dwarf8 polymorphisms associated with flowering time in elite European inbred lines of maize (Zea mays L.). Theoretical and Applied Genetics 111: 206–217.
|
[82] | Thornsberry J, Goodman M, Doebley J, Kresovich S, Nielsen D, et al.. (2001) Dwarf8 polymorphisms associate with variation in flowering time. Nature Genetics 28: 286–289. Available:http://www.ncbi.nlm.nih.gov/pubmed/19952?783.
|
[83] | Camus-Kulandaivelu L, Veyrieras J, Madur D, Combes V, Fourmann M, et al.. (2006) Maize adaptation to temperate climate: relationship between population structure and polymorphism in the Dwarf8 gene. Genetics 172: 2449–2463. Available:http://www.ncbi.nlm.nih.gov/pubmed/16415?370.
|
[84] | Bolduc N, Hake S (2009) The maize transcription factor KNOTTED1 directly regulates the gibberellin catabolism gene ga2ox1. Plant Cell 21: 1647–1658. Available:http://www.pubmedcentral.nih.gov/article?render.fcgi?artid=2714931&tool=pmcentrez?&rendertype=abstract. Accessed 23 June 2010.
|
[85] | Bomblies K, Wang R, Ambrose B, Schmidt R, Meeley R, et al.. (2003) Duplicate FLORICAULA/LEAFY homologs zfl1 and zfl2 control inflorescence architecture and flower patterning in maize. Development 130: 2385–2395. Available:http://dev.biologists.org/cgi/doi/10.124?2/dev.00457. Accessed 12 February 2011.
|
[86] | Danilevskaya O, Meng X, Ananiev E (2010) Concerted modification of flowering time and inflorescence architecture by ectopic expression of TFL1-Like genes in maize. Plant Physiology 153: 238–251 doi:10.1104/pp.110.154211.
|
[87] | Heuer S, Hansen S, Bantin J, Brettschneider R, Kranz E, et al.. (2001) The maize MADS box gene ZmMADS3 affects node number and spikelet development and is co-expressed with ZmMADS1 during flower development, in egg cells, and early embryogenesis. Plant Physiology 127: 33–45. Available:http://www.pubmedcentral.nih.gov/article?render.fcgi?artid=117960&tool=pmcentrez&?rendertype=abstract.
|
[88] | Wigge P, Kim M, Jaeger K, Busch W, Schmid M, et al.. (2005) Integration of spatial and temporal information during floral induction in Arabidopsis. Science 309: 1056–1059. Available:http://www.ncbi.nlm.nih.gov/pubmed/16099?980.
|
[89] | Malcomber S, Preston J, Reinheimer R, Kossuth J, Kellogg E (2006) Developmental Gene Evolution and the Origin of Grass Inflorescence Diversity. Advances in Botanical Research 44: 425–481. Available:http://linkinghub.elsevier.com/retrieve/?pii/S0065229606440118. Accessed 15 March 2012.
|
[90] | Pastore JJ, Limpuangthip A, Yamaguchi N, Wu M-F, Sang Y, et al.. (2011) LATE MERISTEM IDENTITY2 acts together with LEAFY to activate APETALA1. Development 138: 3189–3198. Available:http://dev.biologists.org/cgi/doi/10.124?2/dev.063073. Accessed 13 July 2011.
|
[91] | Liljegren SJ, Gustafson-Brown C, Pinyopich a, Ditta GS, Yanofsky MF (1999) Interactions among APETALA1, LEAFY, and TERMINAL FLOWER1 specify meristem fate. The Plant cell 11: 1007–1018. Available:http://www.pubmedcentral.nih.gov/article?render.fcgi?artid=144247&tool=pmcentrez&?rendertype=abstract.
|
[92] | Danilevskaya O, Meng X, Hou Z, Ananiev E, Simmons C (2008) A genomic and expression compendium of the expanded PEBP gene family from maize. Plant Physiology 146: 250–264. Available:http://www.pubmedcentral.nih.gov/article?render.fcgi?artid=2230559&tool=pmcentrez?&rendertype=abstract. Accessed 9 September 2010.
|
[93] | Salvi S, Tuberosa R, Chiapparino E, Maccaferri M, Veillet S, et al. (2002) Toward positional cloning of Vgt1, a QTL controlling the transition from the vegetative to the reproductive phase in maize. Plant Molecular Biology 48: 601–613.
|
[94] | Vl?du?u C, McLaughlin J, Phillips R (1999) Fine mapping and characterization of linked quantitative trait loci involved in the transition of the maize apical meristem from vegetative to generative structures. Genetics 153: 993–1007. Available:http://www.pubmedcentral.nih.gov/article?render.fcgi?artid=1460787&tool=pmcentrez?&rendertype=abstract.
|
[95] | Bomblies K, Doebley J (2006) Pleiotropic effects of the duplicate maize FLORICAULA/LEAFY genes zfl1 and zfl2 on traits under selection during maize domestication. Genetics 172: 519–531. Available:http://www.ncbi.nlm.nih.gov/pubmed/16204?211.
|
[96] | Mena M, Mandel M, Lerner D, Yanofsky M, Schmidt R (1995) A characterization of the MADS-box gene family in maize. The Plant Journal 8: 845–854. Available:http://onlinelibrary.wiley.com/doi/10.10?46/j.1365-313X.1995.8060845.x/abstract. Accessed 23 March 2011.
|
[97] | Cooper M, Chapman S, Podlich D, Hammer G (2002) The GP problem: Quantifying gene-to-phenotype relationships. In Silico Biology 2: 151–164.
|
[98] | Hammer GL, Cooper M, Tardieu F, Welch S, Walch B, et al. (2006) Models for navigating biological complexity in breeding improved crop plants. Trends in Plant Science 11: 587–593.
|
[99] | Benfey P, Mitchell-Olds T (2008) From genotype to phenotype: systems biology meets natural variation. Science 320: 495–497.
|
[100] | Yin X, Struik P (2010) Modelling the crop: from system dynamics to systems biology. Journal of Experimental Botany 61: 2171–2183. Available:http://www.ncbi.nlm.nih.gov/pubmed/20051?352. Accessed 15 September 2010.
|
[101] | Kauffman SA (1993) The Origins of Order: Self-Organization and Selection in Evolution. New York, USA: Oxford University Press. 734.
|
[102] | Mendoza L, Alvarez-Buylla E (1998) Dynamics of the genetic regulatory network for Arabidopsis thaliana flower morphogenesis. Journal of Theoretical Biology 193: 307–319.
|
[103] | Akutsu T, Miyano S, Kuhara S (1999) Identification of genetic networks from a small number of gene expression patterns under the Boolean network model. Pacific Symposium on Biocomputing 4: 17–28.
|
[104] | Genoud T, Métraux J (1999) Crosstalk in plant cell signaling: structure and function of the genetic network. Trends in Plant Science 4: 503–507.
|
[105] | Di-Paolo E (2001) Rhythmic and non-rhythmic attractors in asynchronous random Boolean networks. BioSystems 59: 185–195.
|
[106] | Genoud T, Trevino-Santa-Cruz M, Métraux J (2001) Numeric simulation of plant signaling networks. Plant Physiology 126: 1430–1437.
|
[107] | Alvarez-Buylla E, Benítez M, Dávila E, Chaos A, Espinosa-Soto C, et al.. (2007) Gene regulatory network models for plant development. Current Opinion in Plant Biology 10: 83–91. Available:http://www.ncbi.nlm.nih.gov/pubmed/17142?086.
|
[108] | Yuh C, Bolouri H, Davidson E (2001) Cis-regulatory logic in the endo16 gene: switching from a specification to a differentiation mode of control. Development 128: 617–629. Available:http://www.ncbi.nlm.nih.gov/pubmed/11171?388.
|
[109] | Yuh C, Bolouri H, Davidson E (1998) cis-regulatory logic in the endo 16 gene: Experimental and computational analysis of a sea urchin gene. Science 279: 1896–1902.
|
[110] | Davidson E, Rast J, Oliveri P, Ransick A, Calestani C, et al. (2002) A genomic regulatory network for development. Science 295: 1670–1678.
|
[111] | Press W, Teukolsky S, Vetterling W, Flannery B (1992) Numerical recipes in C: the art of scientific computing. Cambridge: Cambridge University Press. 933.
|
[112] | Nelder J, Mead R (1965) A simplex method for function minimization. Computer Journal 7: 308–313.
|
[113] | Russell W, Stuber C (1982) Effects of photoperiod and temperatures on the duration of vegetative growth in maize. Crop Science 23: 847–850.
|
[114] | Morishige D, Childs K, Moore L, Mullet J (2002) Targeted analysis of orthologous phytochrome A regions of the sorghum, maize, and rice genomes using comparative gene-island sequencing. Plant Physiology 130: 1614–1625.
|
[115] | Ku L, Li S, Chen X, Wu L, Wang X, et al.. (2011) Cloning and Characterization of Putative Hd6 Ortholog Associated with Zea mays L. Photoperiod Sensitivity. Agricultural Sciences in China 10: 18–27. Available:http://linkinghub.elsevier.com/retrieve/?pii/S1671292711603039. Accessed 5 April 2011.
|
[116] | Moose SP, Sisco PH (1994) Glossy15 Controls the Epidermal Juvenile-to-Adult Phase Transition in Maize. Plant Cell 6: 1343–1355. Available:http://www.pubmedcentral.nih.gov/article?render.fcgi?artid=160525&tool=pmcentrez&?rendertype=abstract.
|
[117] | Jung J-H, Seo Y-H, Seo P, Reyes J, Yun J, et al.. (2007) The GIGANTEA-regulated microRNA172 mediates photoperiodic flowering independent of CONSTANS in Arabidopsis. Plant cell 19: 2736–2748. Available:http://www.pubmedcentral.nih.gov/article?render.fcgi?artid=2048707&tool=pmcentrez?&rendertype=abstract. Accessed 12 January 2011.
|
[118] | Tadege M, Sheldon C, Helliwell C, Upadhyaya N, Dennis E, et al.. (2003) Reciprocal control of flowering time by OsSOC1 in transgenic Arabidopsis and by FLC in transgenic rice. Plant Biotechnology Journal 1: 361–369. Available:http://www.ncbi.nlm.nih.gov/pubmed/17166?135.
|