全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

Multiple Sclerosis and CCSVI: A Population-Based Case Control Study

DOI: 10.1371/journal.pone.0041227

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background Chronic cerebrospinal venous insufficiency (CCSVI) has been associated to multiple sclerosis (MS). Objective To evaluate the possible association between CCSVI and MS, using a population-based control design. Methods A random cohort of 148 incident MS patients were enrolled in the study. We have also studied 20 patients with clinically isolated syndrome (CIS), 40 patients with other neurological diseases (OND), and 172 healthy controls. Transcranial (TCC) and Echo Color Doppler (ECD) were carried out in 380 subjects. A subject was considered CCSVI positive if ≥2 venous hemodynamic criteria were fulfilled. Results CCSVI was present in 28 (18.9%) of the MS patients, in 2 (10%) of CIS patients, in 11 (6.4%) of the controls, and in 2 (5%) of the OND patients. A significant association between MS and CCSVI was found with an odds ratio of 3.41 (95% confidence interval 1.63–7.13; p = 0.001). CCSVI was significantly more frequent among MS subjects with a disease duration longer than 144 months (26.1% versus 12.6% of patients with duration shorter than 144 months; p = 0.03) and among patients with secondary progressive (SP) and primary progressive (PP) forms (30.2% and 29.4, respectively) than in patients with relapsing remitting (RR) MS (14.3%). A stronger association was found considering SP and PP forms (age adjusted OR = 4.7; 95% CI 1.83–12.0, p = 0.001); the association was weaker with the RR patients (age adjusted OR = 2.58; 95%CI 1.12–5.92; p = 0.02) or not significant in CIS group (age adjusted OR = 2.04; 95%CI 0.40–10.3; p = 0.4). Conclusions A higher frequency of CCSVI has been found in MS patients; it was more evident in patients with advanced MS, suggesting that CCSVI could be related to MS disability.

References

[1]  Charcot JM (1868) Histology of “sclerose en plaque”. Gazette Hosp Paris 41: 554–565.
[2]  Fog T (1965) The topography of plaques in multiple sclerosis with special reference to cerebral plaques. Acta Neurol Scand. Suppl 151–167.
[3]  Schelling P (1986) Demanding venous reflux into the skull of spine: relevance to multiple sclerosis. Med Hypotheses 2: 141–148.
[4]  Tan IL, Van Schijndel RA, Pouwels PJ, Van Walderveen MA, Reichenbach JR, et al. (2000) MR venography of multiple sclerosis. Am J Neuroradiol 21: 1033–1042.
[5]  Adams CWM (1989) Vascular aspects of multiple sclerosis. In: A Colour Atlas of Multiple Sclerosis & Other Myelin Disorders. London: Wolfe Medical Publication. 184–187.
[6]  Zamboni P (2006) Iron-dependent inflammation in venous disease and proposed parallels in multiple sclerosis. J R Soc Med 96: 589–593.
[7]  Zamboni P, Galeotti R, Menegatti E, Malagoni AM, Tacconi G, et al. (2009) Chronic cerebrospinal venous insufficiency in patients with multiple sclerosis. J Neurol Neurosurg Psychiatry 80: 392–399.
[8]  Zamboni P, Menegatti E, Galeotti R, Malagoni AM, Tacconi G, et al. (2009) The value of cerebral Doppler venous hemodynamics in the assessment of multiple sclerosis. J Neurol Sci 282: 21–27.
[9]  Stolz E, Kaps M, Kern A, Babacan SS, Dorndorf W (1989) Transcranial color-coded duplex sonography of intracranial veins and sinuses. Reference data from 130 volunteers. Stroke 90: 1070–1075.
[10]  Zamboni P, Menegatti E, Bartolomei I, Galeotti R, Malagoni AM, et al. (2007) Intracranial venous hemodynamics in multiple sclerosis. Curr Neurovasc Res 4: 252–258.
[11]  Krogias C, Schr?der A, Wiendl H, Hohlfeld R, Gold R (2010) “Chronic cerebrospinal venous insufficiency” and multiple sclerosis: critical analysis and first observation in an unselected cohort of MS patients. Nervenartz 81: 740–746.
[12]  Zivadinov R, Lopez-Soriano A, Weinstock-Guttman B, Schirda CV, Magnano CR, et al. (2011) Use of MR venography for characterization of the extracranial venous system in patients with multiple sclerosis and healthy control subjects. Radiology 258: 562–570.
[13]  Doepp F, Paul F, Valdueza JM, Schmierer K, Schreiber SJ (2010) No cerebrovascular venous congestion in patients with multiple sclerosis. Ann Neurol 68: 173–180.
[14]  Sundstr?m P, W?hlin A, Ambarki K, Birgander R, Eklund A, et al. (2010) Venous and cerebrospinal fluid flow in multiple sclerosis: a case-control study. Ann Neurol 68: 255–259.
[15]  Wattjes MP, Van Oosten BW, De Graaf WL, Seewann A, Bot JC, et al. (2010) No association of abnormal cranial venous drainage with multiple sclerosis: a magnetic resonance venography and flow-quantification study. J Neurol Neurosurg Psychiatry 82: 429–435.
[16]  Laupacis A, Lillie E, Dueck A, Straus S, Perrier L, et al. (2011) Association between chronic cerebrospinal venous insufficiency and multiple sclerosis: a meta-analysis. CMAJ 183: 1203–1212.
[17]  Nicoletti A, Patti F, Lo Fermo S, Sorbello V, Reggio E, et al. (2005) Possible increasing risk of multiple sclerosis. Neurology 65: 1259–1263.
[18]  Nicoletti A, Patti F, Lo Fermo S, Messina S, Bruno E, et al. (2011) Increasing frequency of multiple sclerosis in Catania, Sicily: a 30-year survey. Mult Scler 17: 273–280.
[19]  Poser CM, Paty DW, Scheinberg L, McDonald WI, Davis FA, et al. (1983) New diagnostic criteria for multiple sclerosis: guidelines for research protocols. Ann Neurol 13: 227–231.
[20]  Lublin FD, Reingold SC (1996) Defining the clinical course of multiple sclerosis: results of an international survey: National Multiple Sclerosis Society (USA) Advisory Committee on Clinical Trials of New Agents in Multiple Sclerosis. Neurology 46: 907–911.
[21]  Meneghini F, Rocca WA, Anderson DW, Grigoletto F, Morgante L, et al. (1992) Validating screening instruments for neuroepidemiologic surveys: experience in Sicily. Sicilian Neuro-Epidemiologic Study (SNES) Group. J Clin Epidemiol 45: 319–331.
[22]  McDonald WI, Compston A, Edan G, Goodkin D, Hartung HP, et al. (2001) Recommended diagnostic criteria for multiple sclerosis: guidelines from the international panel on the diagnosis of multiple sclerosis. Ann Neurol 51: 121–127.
[23]  Kurtzke JF (1983) Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology 33: 1444–1452.
[24]  STATA Corp. STATA statistical software: release 10.0. College Station, TX: STATA Corporation.
[25]  Zivadinov R, Marr K, Cutter G, Ramanathan M, Benedict RH, et al. (2011) Prevalence, sensitivity, and specificity of chronic cerebrospinal venous insufficiency in MS. Neurology 77: 138–144.
[26]  Yamout B, Herlopian A, Issa Z, Habib RH, Fawaz A, et al. (2010) Extracranial venous stenosis is an unlikely cause of multiple sclerosis. Mult Scler 16: 1341–1348.
[27]  Bastianello S, Romani A, Viselner G, Tibaldi EC, Giugni E, et al. (2011) Chronic cerebrospinal venous insufficiency in multiple sclerosis: clinical correlates from a multicentre study. BMC Neurology 11: 132.
[28]  Baracchini C, Perini P, Calabrese M, Causin F, Rinaldi F, et al. (2011) No evidence of chronic cerebrospinal venous insufficiency at multiple sclerosis onset. Ann Neurol 69: 90–99.
[29]  Al-Omari MH, Rousan LA (2010) Internal jugular vein morphology and hemodynamics in patients with multiple sclerosis. Int Angiol 29: 115–120.
[30]  Simka M, Kostecki J, Zaniewski M, Majewski E, Hartel M (2010) Extracranial Doppler sonographic criteria of chronic cerebrospinal venous insufficiency in the patients with multiple sclerosis. Int Angiol 29: 109–114.
[31]  Menegatti E, Genova V, Tessari M, Malagoni AM, Bartolomei I, et al. (2010) The reproducibility of colour Doppler in chronic cerebrospinal venous insufficiency associated with multiple sclerosis. Int Angiol 29: 121–126.
[32]  Hill BA (1965) The environment and disease: Association or causation? Proceedings of the Royal Society of Medicine 58: 295–300.
[33]  Dolic K, Weinstock-Guttman B, Marr K, Valnarov V, Carl E, et al. (2011) Risk factors for chronic cerebrospinal venous insufficiency (CCSVI) in a large cohort of volunteers. PLoS One 6: 11. Available: doi:10.1371/journal.pone.0028062 Accessed 30 Nov 2011.
[34]  Santiago O, Gutierrez J, Sorlozano A, De Dios Luna J, Villegas E, et al. (2010) Relation between Epstein-Barr virus and multiple sclerosis: analytic study of scientific production. Eur J Clin Microbiol Infect Dis 29: 857–866.
[35]  Ertl-Wagner B, Koerte I, Kuempfel T, Blaschek A, Laubender RP, et al. (2011) Non-specific alterations of craniocervical venous drainage in multiple sclerosis revealed by cardiac-gated phase-contrast MRI. MSJ. doi 10.1177/1352458511432742.
[36]  Doepp F, Würfel JT, Pfueller CF, Valdueza JM, Petersen D, et al. (2011) Venous drainage in multiple sclerosis: A combined MRI and ultrasound study. Neurology 77(19): 1745–1751.
[37]  Tsivgoulis G, Mantatzis M, Bogiatzi C, Vadikolias K, Voumvourakis K, et al. (2011) Extracranial venous hemodynamics in multiple sclerosis. Neurology 77: 1241–1245.
[38]  Diaconu C, Staugaitis S, McBride J, Schwanger C, Rae-Grant A, et al. (2011) Anatomical and histological analysis of venous structures associated with chronic cerebro-spinal venous insufficiency. Mult Scler 17: S9–S52. Presented at 5th joint triennial congress of the ECTRIMS and ACTRIMS, Amsterdam 19–22 Oct 2011.
[39]  De Keyser J, Steen C, Mostert JP, Koch MW (2008) Hypoperfusion of the cerebral white matter in multiple sclerosis: possible mechanisms and pathophysiological significance. J Cereb Blood Flow Metab 28: 1645–1651.
[40]  Varga AW, Johnson G, Babb JS, Herbert J, Grossman RI, et al. (2009) White matter hemodynamic abnormalities precede sub-cortical gray matter changes in multiple sclerosis. J Neurol Sci 282: 28–33.
[41]  Wuerfel J, Paul F, Zipp F (2007) Cerebral blood perfusion changes in multiple sclerosis. J Neurol Sci 259: 16–20.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133