Anesthetics are in routine use, yet the mechanisms underlying their function are incompletely understood. Studies in vitro demonstrate that both GABAA and NMDA receptors are modulated by anesthetics, but whole animal models have not supported the role of these receptors as sole effectors of general anesthesia. Findings in C. elegans and in children reveal that defects in mitochondrial complex I can cause hypersensitivity to volatile anesthetics. Here, we tested a knockout (KO) mouse with reduced complex I function due to inactivation of the Ndufs4 gene, which encodes one of the subunits of complex I. We tested these KO mice with two volatile and two non-volatile anesthetics. KO and wild-type (WT) mice were anesthetized with isoflurane, halothane, propofol or ketamine at post-natal (PN) days 23 to 27, and tested for loss of response to tail clamp (isoflurane and halothane) or loss of righting reflex (propofol and ketamine). KO mice were 2.5 - to 3-fold more sensitive to isoflurane and halothane than WT mice. KO mice were 2-fold more sensitive to propofol but resistant to ketamine. These changes in anesthetic sensitivity are the largest recorded in a mammal.
References
[1]
Franks NP, Lieb WR (1994) Molecular and cellular mechanisms of general anaesthesia. Nature 367: 607–614.
[2]
Humphrey JA, Sedensky MM, Morgan PG (2002) Understanding anesthesia: making genetic sense of the absence of senses. Hum Mol Genet 11: 1241–1249.
[3]
Campagna JA, Miller KW, Forman SA (2003) Mechanisms of actions of inhaled anesthetics. N Engl J Med 348: 2110–2124.
[4]
Eger EI 2nd, Liao M, Laster MJ, Won A, Popovich J, et al. (2006) Contrasting roles of the N-methyl-D-aspartate receptor in the production of immobilization by conventional and aromatic anesthetics. Anesth Analg 102: 1397–1406.
[5]
Liao M, Sonner JM, Jurd R, Rudolph U, Borghese CM, et al. (2005) Beta3-containing gamma-aminobutyric acidA receptors are not major targets for the amnesic and immobilizing actions of isoflurane. Anesth Analg 101: 412–418, table of contents.
[6]
Forman SA, Chin VA (2008) General anesthetics and molecular mechanisms of unconsciousness. Int Anesthesiol Clin 46: 43–53.
[7]
Heurteaux C, Guy N, Laigle C, Blondeau N, Duprat F, et al. (2004) TREK-1, a K+ channel involved in neuroprotection and general anesthesia. EMBO J 23: 2684–2695.
[8]
Morgan PG, Sedensky MM (1994) Mutations conferring new patterns of sensitivity to volatile anesthetics in Caenorhabditis elegans. Anesthesiology 81: 888–898.
[9]
Kayser EB, Morgan PG, Hoppel CL, Sedensky MM (2001) Mitochondrial expression and function of GAS-1 in Caenorhabditis elegans. J Biol Chem 276: 20551–20558.
[10]
Kayser EB, Morgan PG, Sedensky MM (1999) GAS-1: a mitochondrial protein controls sensitivity to volatile anesthetics in the nematode Caenorhabditis elegans. Anesthesiology 90: 545–554.
[11]
Falk MJ, Rosenjack JR, Polyak E, Suthammarak W, Chen Z, et al. (2009) Subcomplex Ilambda specifically controls integrated mitochondrial functions in Caenorhabditis elegans. PLoS One 4: e6607.
[12]
Suthammarak W, Morgan PG, Sedensky MM (2010) Mutations in mitochondrial complex III uniquely affect complex I in Caenorhabditis elegans. J Biol Chem 285: 40724–40731.
[13]
Suthammarak W, Yang YY, Morgan PG, Sedensky MM (2009) Complex I function is defective in complex IV-deficient Caenorhabditis elegans. J Biol Chem 284: 6425–6435.
[14]
Morgan PG, Hoppel CL, Sedensky MM (2002) Mitochondrial defects and anesthetic sensitivity. Anesthesiology 96: 1268–1270.
[15]
Kruse SE, Watt WC, Marcinek DJ, Kapur RP, Schenkman KA, et al. (2008) Mice with mitochondrial complex I deficiency develop a fatal encephalomyopathy. Cell Metab 7: 312–320.
[16]
Quintana A, Kruse SE, Kapur RP, Sanz E, Palmiter RD (2010) Complex I deficiency due to loss of Ndufs4 in the brain results in progressive encephalopathy resembling Leigh syndrome. Proc Natl Acad Sci U S A 107: 10996–11001.
Hollmann MW, Liu HT, Hoenemann CW, Liu WH, Durieux ME (2001) Modulation of NMDA receptor function by ketamine and magnesium. Part II: interactions with volatile anesthetics. Anesth Analg 92: 1182–1191.
[19]
Liu HT, Hollmann MW, Liu WH, Hoenemann CW, Durieux ME (2001) Modulation of NMDA receptor function by ketamine and magnesium: Part I. Anesth Analg 92: 1173–1181.
[20]
Sonner JM, Gong D, Eger EI 2nd (2000) Naturally occurring variability in anesthetic potency among inbred mouse strains. Anesth Analg 91: 720–726.
[21]
Sonner JM, Gong D, Li J, Eger EI 2nd, Laster MJ (1999) Mouse strain modestly influences minimum alveolar anesthetic concentration and convulsivity of inhaled compounds. Anesth Analg 89: 1030–1034.
[22]
Waud DR (1972) On biological assays involving quantal responses. J Pharmacol Exp Ther 183: 577–607.
[23]
Kubo K, Nishikawa K, Hardy-Yamada M, Ishizeki J, Yanagawa Y, et al. (2009) Altered responses to propofol, but not ketamine, in mice deficient in the 65-kilodalton isoform of glutamate decarboxylase. J Pharmacol Exp Ther 329: 592–599.
[24]
Petrenko AB, Yamakura T, Fujiwara N, Askalany AR, Baba H, et al. (2004) Reduced sensitivity to ketamine and pentobarbital in mice lacking the N-methyl-D-aspartate receptor GluRepsilon1 subunit. Anesth Analg 99: 1136–1140, table of contents.
[25]
Singaram VK, Somerlot BH, Falk SA, Falk MJ, Sedensky MM, et al. (2011) Optical reversal of halothane-induced immobility in C. elegans. Curr Biol 21: 2070–2076.
[26]
Morgan PG, Sedensky M, Meneely PM (1990) Multiple sites of action of volatile anesthetics in Caenorhabditis elegans. Proc Natl Acad Sci U S A 87: 2965–2969.
[27]
Sonner JM, Werner DF, Elsen FP, Xing Y, Liao M, et al. (2007) Effect of isoflurane and other potent inhaled anesthetics on minimum alveolar concentration, learning, and the righting reflex in mice engineered to express alpha1 gamma-aminobutyric acid type A receptors unresponsive to isoflurane. Anesthesiology 106: 107–113.
[28]
Werner DF, Swihart A, Rau V, Jia F, Borghese CM, et al. (2011) Inhaled anesthetic responses of recombinant receptors and knockin mice harboring alpha2(S270H/L277A) GABA(A) receptor subunits that are resistant to isoflurane. J Pharmacol Exp Ther 336: 134–144.
[29]
Zhang Y, Sonner JM, Eger EI 2nd, Stabernack CR, Laster MJ, et al. (2004) Gamma-aminobutyric acidA receptors do not mediate the immobility produced by isoflurane. Anesth Analg 99: 85–90.
Eckel B, Richtsfeld M, Starker L, Blobner M (2010) Transgenic Alzheimer mice have a larger minimum alveolar anesthetic concentration of isoflurane than their nontransgenic littermates. Anesth Analg 110: 438–441.
[32]
Brown EN, Lydic R, Schiff ND (2010) General anesthesia, sleep, and coma. N Engl J Med 363: 2638–2650.
[33]
Chen X, Shu S, Bayliss DA (2009) HCN1 channel subunits are a molecular substrate for hypnotic actions of ketamine. J Neurosci 29: 600–609.
[34]
Walker JE (1992) The NADH:ubiquinone oxidoreductase (complex I) of respiratory chains. Q Rev Biophys 25: 253–324.
[35]
Scholvinck ML, Howarth C, Attwell D (2008) The cortical energy needed for conscious perception. Neuroimage 40: 1460–1468.
[36]
Kilbride SM, Telford JE, Tipton KF, Davey GP (2008) Partial inhibition of complex I activity increases Ca-independent glutamate release rates from depolarized synaptosomes. J Neurochem 106: 826–834.
[37]
Xi J, Liu R, Asbury GR, Eckenhoff MF, Eckenhoff RG (2004) Inhalational anesthetic-binding proteins in rat neuronal membranes. J Biol Chem 279: 19628–19633.
[38]
Quintana A, Zanella S, Koch H, Kruse SE, Lee D, et al. (2012) Fatal breathing dysfunction in a mouse model of Leigh Syndrome. J Clin Invest 122: 2359–68.
[39]
Harris RA, Munroe J, Farmer B, Kim KC, Jenkins P (1971) Action of halothane upon mitochondrial respiration. Archives of Biochemistry and Biophysics 142: 435–444.
[40]
Hartman PS, Ishii N, Kayser EB, Morgan PG, Sedensky MM (2001) Mitochondrial mutations differentially affect aging, mutability and anesthetic sensitivity in Caenorhabditis elegans. Mech Ageing Dev 122: 1187–1201.
[41]
Jinks SL, Bravo M, Hayes SG (2008) Volatile anesthetic effects on midbrain-elicited locomotion suggest that the locomotor network in the ventral spinal cord is the primary site for immobility. Anesthesiology 108: 1016–1024.
[42]
Abulafia R, Zalkind V, Devor M (2009) Cerebral activity during the anesthesia-like state induced by mesopontine microinjection of pentobarbital. J Neurosci 29: 7053–7064.
[43]
Alkire MT, Asher CD, Franciscus AM, Hahn EL (2009) Thalamic microinfusion of antibody to a voltage-gated potassium channel restores consciousness during anesthesia. Anesthesiology 110: 766–773.
[44]
Alkire MT, McReynolds JR, Hahn EL, Trivedi AN (2007) Thalamic microinjection of nicotine reverses sevoflurane-induced loss of righting reflex in the rat. Anesthesiology 107: 264–272.
[45]
Quintana A, Zanella S, Koch H, Kruse SE, Lee D, et al. (2012) Fatal breathing dysfunction in a mouse model of Leigh Syndrome. Journal of Clinical Investigation In Press.