Hedgehog signaling plays critical roles in pancreatic oncogenesis and chronic pancreatitis, but its roles in acute pancreatitis (AP) are largely ambiguous. In this study, we provide evidence that Sonic hedgehog (Shh), but neither Desert hedgehog (Dhh) nor Indian hedgehog (Ihh), is the main protein whose expression is activated during the development of cerulein-induced acute pancreatitis in mice, and the Shh serves as an anti-inflammation factor in an autocrine manner. Blocking autocrine Shh signaling with anti-Shh neutralizing antibody aggravates the progression of acute pancreatitis. Mechanistic insight into Shh signaling activation in acute pancreatitis indicates that inflammatory stimulation activates Shh expression and secretion, and subsequently upregulates the expression and secretion of interleukin-10 (IL-10). Moreover, inhibition of Shh signaling with neutralizing antibody abolishes IL-10 production in vivo and in vitro. Molecular biological studies show that autocrine Shh signaling activates the key transcriptional factor Gli1 so that the target gene IL-10 is upregulated, leading to the protective and anti-inflammatory functions in the mouse model of acute pancreatitis. Thus, this study suggests autocrine Shh signaling functions as a protective signaling in the progression of acute pancreatitis.
Wan MH, Huang W, Latawiec D, Jiang K, Booth DM, et al. (2012) Review of experimental animal models of biliary acute pancreatitis and recent advances in basic research. HPB (Oxford) 14: 73–81.
[3]
Lau J, Kawahira H, Hebrok M (2006) Hedgehog signaling in pancreas development and disease. Cell Mol Life Sci 63: 642–652.
[4]
Apelqvist A, Ahlgren U, Edlund H (1997) Sonic hedgehog directs specialised mesoderm differentiation in the intestine and pancreas. Curr Biol 7: 801–804.
[5]
Kawahira H, Ma NH, Tzanakakis ES, McMahon AP, Chuang PT, et al. (2003) Combined activities of hedgehog signaling inhibitors regulate pancreas development. Development 130: 4871–4879.
[6]
Kawahira H, Scheel DW, Smith SB, German MS, Hebrok M (2005) Hedgehog signaling regulates expansion of pancreatic epithelial cells. Dev Biol 280: 111–121.
[7]
Ingham PW, McMahon AP (2001) Hedgehog signaling in animal development: paradigms and principles. Genes Dev 15: 3059–3087.
[8]
Heiser PW, Hebrok M (2004) Development and cancer: lessons learned in the pancreas. Cell Cycle 3: 270–272.
[9]
Bitgood MJ, McMahon AP (1995) Hedgehog and Bmp genes are coexpressed at many diverse sites of cell-cell interaction in the mouse embryo. Dev Biol 172: 126–138.
[10]
Hebrok M, Kim SK, St Jacques B, McMahon AP, Melton DA (2000) Regulation of pancreas development by hedgehog signaling. Development 127: 4905–4913.
[11]
McMahon AP, Ingham PW, Tabin CJ (2003) Developmental roles and clinical significance of hedgehog signaling. Curr Top Dev Biol 53: 1–114.
[12]
Ruiz i Altaba A (1999) Gli proteins encode context-dependent positive and negative functions: implications for development and disease. Development 126: 3205–3216.
[13]
Kayed H, Kleeff J, Osman T, Keleg S, Buchler MW, et al. (2006) Hedgehog signaling in the normal and diseased pancreas. Pancreas 32: 119–129.
[14]
Teglund S, Toftgard R (2010) Hedgehog beyond medulloblastoma and basal cell carcinoma. Biochim Biophys Acta 1805: 181–208.
[15]
Guy CD, Suzuki A, Zdanowicz M, Abdelmalek MF, Burchette J, et al.. (2011) Hedgehog pathway activation parallels histologic severity of injury and fibrosis in human nonalcoholic fatty liver disease. Hepatology.
[16]
Zacharias WJ, Li X, Madison BB, Kretovich K, Kao JY, et al.. (2010) Hedgehog is an anti-inflammatory epithelial signal for the intestinal lamina propria. Gastroenterology 138: 2368–2377, 2377 e2361–2364.
[17]
Fendrich V, Esni F, Garay MV, Feldmann G, Habbe N, et al. (2008) Hedgehog signaling is required for effective regeneration of exocrine pancreas. Gastroenterology 135: 621–631.
[18]
Zhou X, Li Y, Ding J, Wang L, Wang R, et al. (2009) Down-regulation of tumor necrosis factor-associated factor 6 is associated with progression of acute pancreatitis complicating lung injury in mice. Tohoku J Exp Med 217: 279–285.
[19]
Blinman TA, Gukovsky I, Mouria M, Zaninovic V, Livingston E, et al. (2000) Activation of pancreatic acinar cells on isolation from tissue: cytokine upregulation via p38 MAP kinase. Am J Physiol Cell Physiol 279: C1993–2003.
[20]
Liu Z, Li T, Liu Y, Jia Z, Li Y, et al. (2009) WNT signaling promotes Nkx2.5 expression and early cardiomyogenesis via downregulation of Hdac1. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 1793: 300–311.
[21]
Van Laethem JL, Eskinazi R, Louis H, Rickaert F, Robberecht P, et al. (1998) Multisystemic production of interleukin 10 limits the severity of acute pancreatitis in mice. Gut 43: 408–413.
[22]
Shifrin AL, Chirmule N, Gao GP, Wilson JM, Raper SE (2005) Innate immune responses to adenoviral vector-mediated acute pancreatitis. Pancreas 30: 122–129.
[23]
Franco-Pons N, Gea-Sorli S, Closa D (2010) Release of inflammatory mediators by adipose tissue during acute pancreatitis. J Pathol 221: 175–182.
[24]
Kayed H, Kleeff J, Esposito I, Giese T, Keleg S, et al. (2005) Localization of the human hedgehog-interacting protein (Hip) in the normal and diseased pancreas. Mol Carcinog 42: 183–192.
[25]
Kayed H, Kleeff J, Keleg S, Buchler MW, Friess H (2003) Distribution of Indian hedgehog and its receptors patched and smoothened in human chronic pancreatitis. J Endocrinol 178: 467–478.
[26]
Thayer SP, di Magliano MP, Heiser PW, Nielsen CM, Roberts DJ, et al. (2003) Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis. Nature 425: 851–856.
[27]
Van Dop WA, Van Den Brink GR (2010) Sonic hedgehog: a link between inflammation, gastric atrophy, and acid suppression? Gastroenterology 138: 426–429.
[28]
Omenetti A, Diehl AM (2008) The adventures of sonic hedgehog in development and repair. II. Sonic hedgehog and liver development, inflammation, and cancer. Am J Physiol Gastrointest Liver Physiol 294: G595–598.
[29]
Amankulor NM, Hambardzumyan D, Pyonteck SM, Becher OJ, Joyce JA, et al. (2009) Sonic hedgehog pathway activation is induced by acute brain injury and regulated by injury-related inflammation. J Neurosci 29: 10299–10308.
[30]
Heretsch P, Tzagkaroulaki L, Giannis A (2010) Modulators of the hedgehog signaling pathway. Bioorg Med Chem 18: 6613–6624.
[31]
Vyas N, Goswami D, Manonmani A, Sharma P, Ranganath HA, et al. (2008) Nanoscale organization of hedgehog is essential for long-range signaling. Cell 133: 1214–1227.
[32]
Kylanpaa ML, Repo H, Puolakkainen PA (2010) Inflammation and immunosuppression in severe acute pancreatitis. World J Gastroenterol 16: 2867–2872.
[33]
Ouyang W, Rutz S, Crellin NK, Valdez PA, Hymowitz SG (2011) Regulation and functions of the IL-10 family of cytokines in inflammation and disease. Annu Rev Immunol 29: 71–109.
[34]
Keceli M, Kucuk C, Sozuer E, Kerek M, Ince O, et al. (2005) The effect of interleukin-10 on acute pancreatitis induced by cerulein in a rat experimental model. J Invest Surg 18: 7–12.
[35]
Warzecha Z, Dembinski A, Ceranowicz P, Konturek SJ, Tomaszewska R, et al. (2003) IGF-1 stimulates production of interleukin-10 and inhibits development of caerulein-induced pancreatitis. J Physiol Pharmacol 54: 575–590.
[36]
Stewart GA, Lowrey JA, Wakelin SJ, Fitch PM, Lindey S, et al. (2002) Sonic hedgehog signaling modulates activation of and cytokine production by human peripheral CD4+ T cells. J Immunol 169: 5451–5457.