全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

Intrinsic Brain Connectivity Related to Age in Young and Middle Aged Adults

DOI: 10.1371/journal.pone.0044067

Full-Text   Cite this paper   Add to My Lib

Abstract:

Age-related variations in resting state connectivity of the human brain were examined from young adulthood through middle age. A voxel-based network measure, degree, was used to assess age-related differences in tissue connectivity throughout the brain. Increases in connectivity with age were found in paralimbic cortical and subcortical regions. Decreases in connectivity were found in cortical regions, including visual areas and the default mode network. These findings differ from those of recent developmental studies examining earlier growth trajectories, and are consistent with known changes in cognitive function and emotional processing during mature aging. The results support and extend previous findings that relied on a priori definitions of regions of interest for their analyses. This approach of applying a voxel-based measure to examine the functional connectivity of individual tissue elements over time, without the need for a priori region of interest definitions, provides an important new tool in brain science.

References

[1]  Gross JJ, Carstensen LL, Pasupathi M, Tsai J, Skorpen CG, et al. (1997) Emotion and aging: experience, expression, and control. Psychol Aging 12: 590–599.
[2]  Baltes PB, Lindenberger U (1997) Emergence of a powerful connection between sensory and cognitive functions across the adult life span: a new window to the study of cognitive aging? Psychol Aging 12: 12–21.
[3]  Park DC, Lautenschlager G, Hedden T, Davidson NS, Smith AD, et al. (2002) Models of visuospatial and verbal memory across the adult life span. Psychol Aging 17: 299–320.
[4]  Park DC, Smith AD, Lautenschlager G, Earles JL, Frieske D, et al. (1996) Mediators of long-term memory performance across the life span. Psychol Aging 11: 621–637.
[5]  Salthouse TA, Ferrer-Caja E (2003) What needs to be explained to account for age-related effects on multiple cognitive variables? Psychol Aging 18: 91–110.
[6]  Achard S, Bullmore E (2007) Efficiency and cost of economical brain functional networks. PLoS Comput Biol 3: e17.
[7]  Andrews-Hanna JR, Snyder AZ, Vincent JL, Lustig C, Head D, et al. (2007) Disruption of large-scale brain systems in advanced aging. Neuron 56: 924–935.
[8]  Damoiseaux JS, Beckmann CF, Arigita EJ, Barkhof F, Scheltens P, et al. (2008) Reduced resting-state brain activity in the “default network” in normal aging. Cereb Cortex 18: 1856–1864.
[9]  Grady CL, Springer MV, Hongwanishkul D, McIntosh AR, Winocur G (2006) Age-related changes in brain activity across the adult lifespan. J Cogn Neurosci 18: 227–241.
[10]  Hedden T, Gabrieli JD (2004) Insights into the ageing mind: a view from cognitive neuroscience. Nat Rev Neurosci 5: 87–96.
[11]  Raz N, Gunning-Dixon F, Head D, Rodrigue KM, Williamson A, et al. (2004) Aging, sexual dimorphism, and hemispheric asymmetry of the cerebral cortex: replicability of regional differences in volume. Neurobiology of aging 25: 377–396.
[12]  Bentourkia M, Bol A, Ivanoiu A, Labar D, Sibomana M, et al. (2000) Comparison of regional cerebral blood flow and glucose metabolism in the normal brain: effect of aging. Journal of the neurological sciences 181: 19–28.
[13]  Cabeza R, Daselaar SM, Dolcos F, Prince SE, Budde M, et al. (2004) Task-independent and task-specific age effects on brain activity during working memory, visual attention and episodic retrieval. Cerebral cortex 14: 364–375.
[14]  Grady CL, Maisog JM, Horwitz B, Ungerleider LG, Mentis MJ, et al. (1994) Age-related changes in cortical blood flow activation during visual processing of faces and location. The Journal of neuroscience : the official journal of the Society for Neuroscience 14: 1450–1462.
[15]  Good CD, Johnsrude IS, Ashburner J, Henson RN, Friston KJ, et al. (2001) A voxel-based morphometric study of ageing in 465 normal adult human brains. Neuroimage 14: 21–36.
[16]  Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10: 186–198.
[17]  Gong G, Rosa-Neto P, Carbonell F, Chen ZJ, He Y, et al. (2009) Age- and gender-related differences in the cortical anatomical network. J Neurosci 29: 15684–15693.
[18]  Meunier D, Achard S, Morcom A, Bullmore E (2009) Age-related changes in modular organization of human brain functional networks. Neuroimage 44: 715–723.
[19]  Shen X, Papademetris X, Constable RT (2010) Graph-theory based parcellation of functional subunits in the brain from resting-state fMRI data. Neuroimage 50: 1027–1035.
[20]  Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, et al. (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15: 273–289.
[21]  Song M, Liu Y, Zhou Y, Wang K, Yu C, et al. (2009) Default network and intelligence difference. Conf Proc IEEE Eng Med Biol Soc 2009: 2212–2215.
[22]  van den Heuvel MP, Stam CJ, Boersma M, Hulshoff Pol HE (2008) Small-world and scale-free organization of voxel-based resting-state functional connectivity in the human brain. Neuroimage 43: 528–539.
[23]  Buckner RL, Sepulcre J, Talukdar T, Krienen FM, Liu H, et al. (2009) Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimer's disease. J Neurosci 29: 1860–1873.
[24]  Cole MW, Pathak S, Schneider W (2010) Identifying the brain's most globally connected regions. Neuroimage 49: 3132–3148.
[25]  Tomasi D, Volkow ND (2011) Functional connectivity hubs in the human brain. Neuroimage
[26]  van den Heuvel MP, Stam CJ, Kahn RS, Hulshoff Pol HE (2009) Efficiency of functional brain networks and intellectual performance. J Neurosci 29: 7619–7624.
[27]  Burdette JH, Laurienti PJ, Espeland MA, Morgan A, Telesford Q, et al. (2010) Using network science to evaluate exercise-associated brain changes in older adults. Front Aging Neurosci 2: 23.
[28]  Martuzzi R, Ramani R, Qiu M, Shen X, Papademetris X, et al. (2011) A whole-brain voxel based measure of intrinsic connectivity contrast reveals local changes in tissue connectivity with anesthetic without a priori assumptions on thresholds or regions of interest. Neuroimage
[29]  Achard S, Salvador R, Whitcher B, Suckling J, Bullmore E (2006) A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. J Neurosci 26: 63–72.
[30]  Barrat A, Barthelemy M, Pastor-Satorras R, Vespignani A (2004) The architecture of complex weighted networks. Proc Natl Acad Sci U S A 101: 3747–3752.
[31]  Martuzzi R, Ramani R, Qiu M, Rajeevan N, Constable RT (2010) Functional connectivity and alterations in baseline brain state in humans. Neuroimage 49: 823–834.
[32]  Scheinost D, Benjamin J, Lacadie CM, Vohr B, Schneider KC, et al. (2012) The Intrinsic Connectivity Distribution: A Novel Contrast Measure Reflecting Voxel Level Functional Connectivity. Neuro Image
[33]  Holmes CJ, Hoge R, Collins L, Woods R, Toga AW, et al. (1998) Enhancement of MR images using registration for signal averaging. Journal of Computer Assisted Tomography 22: 324–333.
[34]  Papademetris X, Jackowski AP, Schultz RT, Staib LH, Duncan JS (2004) Integrated intensity and point-feature nonrigid registration. Medical Image Computing and Computer-Assisted Intervention - Miccai 2004, Pt 1, Proceedings 3216: 763–770.
[35]  Lacadie CM, Fulbright RK, Rajeevan N, Constable RT, Papademetris X (2008) More accurate Talairach coordinates for neuroimaging using non-linear registration. Neuro Image 42: 717–725.
[36]  Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE (2012) Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuro Image 59: 2142–2154.
[37]  Van Dijk KR, Sabuncu MR, Buckner RL (2012) The influence of head motion on intrinsic functional connectivity MRI. Neuro Image 59: 431–438.
[38]  Jelsing J, Hay-Schmidt A, Dyrby T, Hemmingsen R, Uylings HB, et al. (2006) The prefrontal cortex in the Gottingen minipig brain defined by neural projection criteria and cytoarchitecture. Brain Res Bull 70: 322–336.
[39]  Salvador R, Anguera M, Gomar JJ, Bullmore ET, Pomarol-Clotet E (2010) Conditional mutual information maps as descriptors of net connectivity levels in the brain. Front Neuroinform 4: 115.
[40]  Labouvie-Vief G, Hakim-Larson J, DeVoe M, Schoeberlein S (1989) Emotions and self-regulation: a life span view. Human Development 32: 279–299.
[41]  Lawton MP, Kleban MH, Rajagopal D, Dean J (1992) Dimensions of affective experience in three age groups. Psychol Aging 7: 171–184.
[42]  Orgeta V (2009) Specificity of age differences in emotion regulation. Aging Ment Health 13: 818–826.
[43]  Carstensen LL, Pasupathi M, Mayr U, Nesselroade JR (2000) Emotional experience in everyday life across the adult life span. J Pers Soc Psychol 79: 644–655.
[44]  Mather M, Carstensen LL (2003) Aging and attentional biases for emotional faces. Psychol Sci 14: 409–415.
[45]  Charles ST, Mather M, Carstensen LL (2003) Aging and emotional memory: the forgettable nature of negative images for older adults. J Exp Psychol Gen 132: 310–324.
[46]  Grady CL, Hongwanishkul D, Keightley M, Lee W, Hasher L (2007) The effect of age on memory for emotional faces. Neuropsychology 21: 371–380.
[47]  Levine LJ, Bluck S (1997) Experienced and remembered emotional intensity in older adults. Psychol Aging 12: 514–523.
[48]  Thomas RC, Hasher L (2006) The influence of emotional valence on age differences in early processing and memory. Psychol Aging 21: 821–825.
[49]  Sambataro F, Murty VP, Callicott JH, Tan HY, Das S, et al. (2010) Age-related alterations in default mode network: Impact on working memory performance. Neurobiol Aging 31: 839–852.
[50]  Fair DA, Cohen AL, Power JD, Dosenbach NU, Church JA, et al. (2009) Functional brain networks develop from a “local to distributed” organization. PLoS Comput Biol 5: e1000381.
[51]  Fair DA, Dosenbach NU, Church JA, Cohen AL, Brahmbhatt S, et al. (2007) Development of distinct control networks through segregation and integration. Proc Natl Acad Sci U S A 104: 13507–13512.
[52]  Supekar K, Musen M, Menon V (2009) Development of large-scale functional brain networks in children. PLoS Biol 7: e1000157.
[53]  Fair DA, Cohen AL, Dosenbach NU, Church JA, Miezin FM, et al. (2008) The maturing architecture of the brain's default network. Proc Natl Acad Sci U S A 105: 4028–4032.
[54]  Hampson M, Driesen NR, Skudlarski P, Gore JC, Constable RT (2006) Brain connectivity related to working memory performance. Journal of Neuroscience 26: 13338–13343.
[55]  Wen W, Zhu W, He Y, Kochan NA, Reppermund S, et al. (2011) Discrete neuroanatomical networks are associated with specific cognitive abilities in old age. J Neurosci 31: 1204–1212.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133