Background Botulinum neurotoxins (BoNTs), the causative agents for life-threatening human disease botulism, have been recognized as biological warfare agents. Monoclonal antibody (mAb) therapeutics hold considerable promise as BoNT therapeutics, but the potencies of mAbs against BoNTs are usually less than that of polyclonal antibodies (or oligoclonal antibodies). The confirmation of key epitopes with development of effective mAb is urgently needed. Methods and Findings We selected 3 neutralizing mAbs which recognize different non-overlapping epitopes of BoNT/B from a panel of neutralizing antibodies against BoNT/B. By comparing the neutralizing effects among different combination groups, we found that 8E10, response to ganglioside receptor binding site, could synergy with 5G10 and 2F4, recognizing non-overlapping epitopes within Syt II binding sites. However, the combination of 5G10 with 2F4 blocking protein receptor binding sites did not achieve synergistical effects. Moreover, we found that the binding epitope of 8E10 was conserved among BoNT A, B, E, and F, which might cross-protect the challenge of different serotypes of BoNTs in vivo. Conclusions The combination of two mAbs recognizing different receptors' binding domain in BoNTs has a synergistic effect. 8E10 is a potential universal partner for the synergistical combination with other mAb against protein receptor binding domain in BoNTs of other serotypes.
References
[1]
Johnson EA, Bradshaw M (2001) Clostridium botulinum and its neurotoxins: A metabolic and cellular perspective. Toxicon 39: 1703–1722.
[2]
Singh BR (2000) Intimate details of the most poisonous poison. Nature structural biology 7: 617.
[3]
West M (2005) DATE OF ISSUE 02/02/2005 REVIEW INTERVAL Five Yearly AUTHORISED BY Malcolm West.
[4]
Hicks RP, Hartell MG, Nichols DA, Bhattacharjee AK, Van Hamont JE, et al. (2005) The medicinal chemistry of botulinum, ricin and anthrax toxins. Current medicinal chemistry 12: 667–690.
[5]
Rossetto O, Montecucco C (2008) Presynaptic neurotoxins with enzymatic activities. Pharmacology of Neurotransmitter Release 129–170.
[6]
Schiavo G, Shone CC, Rossetto O, Alexander F, Montecucco C (1993) Botulinum neurotoxin serotype F is a zinc endopeptidase specific for VAMP/synaptobrevin. Journal of Biological Chemistry 268: 11516.
[7]
Schiavo G, Rossetto O, Catsicas S, Polverino de Laureto P, DasGupta B, et al. (1993) Identification of the nerve terminal targets of botulinum neurotoxin serotypes A, D, and E. Journal of Biological Chemistry 268: 23784.
[8]
Blasi J, Chapman ER, Link E, Binz T, Yamasaki S, et al. (1993) Botulinum neurotoxin A selectively cleaves the synaptic protein SNAP-25. Nature 365: 160–163.
[9]
Schiavo G, Santucci A, Dasgupta BR, Mehta PP, Jontes J, et al. (1993) Botulinum neurotoxins serotypes A and E cleave SNAP-25 at distinct COOH-terminal peptide bonds. FEBS letters 335: 99–103.
[10]
Darios F, Niranjan D, Ferrari E, Zhang F, Soloviev M, et al. (2010) SNARE tagging allows stepwise assembly of a multimodular medicinal toxin. Proceedings of the National Academy of Sciences 107: 18197–18201.
[11]
Lacy DB, Tepp W, Cohen AC, DasGupta BR, Stevens RC (1998) Crystal structure of botulinum neurotoxin type A and implications for toxicity. Nature Structural & Molecular Biology 5: 898–902.
[12]
Simpson L, Rapport M (1971) The binding of botulinum toxin to membrane lipids: sphingolipids, steroids and fatty acids. Journal of neurochemistry 18: 1751–1759.
[13]
Dong M, Yeh F, Tepp WH, Dean C, Johnson EA, et al. (2006) SV2 is the protein receptor for botulinum neurotoxin A. Science 312: 592.
[14]
Dong M, Liu H, Tepp WH, Johnson EA, Janz R, et al. (2008) Glycosylated SV2A and SV2B mediate the entry of botulinum neurotoxin E into neurons. Molecular biology of the cell 19: 5226–5237.
[15]
Fu Z, Chen C, Barbieri JT, Kim JJP, Baldwin MR (2009) Glycosylated SV2 and gangliosides as dual receptors for botulinum neurotoxin serotype F. Biochemistry 48: 5631–5641.
[16]
Nishiki T, Tokuyama Y, Kamata Y, Nemoto Y, Yoshida A, et al. (1996) The high-affinity binding of Clostridium botulinum type B neurotoxin to synaptotagmin II associated with gangliosides GT1b/GD1a. FEBS letters 378: 253–257.
[17]
Amersdorfer P, Wong C, Smith T, Chen S, Deshpande S, et al. (2002) Genetic and immunological comparison of anti-botulinum type A antibodies from immune and non-immune human phage libraries. Vaccine 20: 1640–1648.
[18]
Nowakowski A, Wang C, Powers D, Amersdorfer P, Smith T, et al. (2002) Potent neutralization of botulinum neurotoxin by recombinant oligoclonal antibody. Proceedings of the National Academy of Sciences 99: 11346.
[19]
Dong M, Tepp WH, Liu H, Johnson EA, Chapman ER (2007) Mechanism of botulinum neurotoxin B and G entry into hippocampal neurons. The Journal of cell biology 179: 1511–1522.
[20]
Lomneth R, Martin TFJ, DasGupta BR (1991) Botulinum neurotoxin light chain inhibits norepinephrine secretion in PC12 cells at an intracellular membranous or cytoskeletal site. Journal of neurochemistry 57: 1413–1421.
[21]
Jin R, Rummel A, Binz T, Brunger AT (2006) Botulinum neurotoxin B recognizes its protein receptor with high affinity and specificity. Nature 444: 1092–1095.
[22]
Swaminathan S, Eswaramoorthy S (2000) Structural analysis of the catalytic and binding sites of Clostridium botulinum neurotoxin B. Nature Structural & Molecular Biology 7: 693–699.
[23]
Montecucco C (1986) How do tetanus and botulinum toxins bind to neuronal membranes? Trends in Biochemical Sciences 11: 314–317.
[24]
Rummel A, Eichner T, Weil T, Karnath T, Gutcaits A, et al. (2007) Identification of the protein receptor binding site of botulinum neurotoxins B and G proves the double-receptor concept. Proceedings of the National Academy of Sciences 104: 359.
[25]
Muraro L, Tosatto S, Motterlini L, Rossetto O, Montecucco C (2009) The N-terminal half of the receptor domain of botulinum neurotoxin A binds to microdomains of the plasma membrane. Biochemical and biophysical research communications 380: 76–80.
[26]
Levy R, Forsyth C, LaPorte S, Geren I, Smith L, et al. (2007) Fine and domain-level epitope mapping of botulinum neurotoxin type A neutralizing antibodies by yeast surface display. Journal of molecular biology 365: 196–210.
[27]
Garcia-Rodriguez C, Geren I, Lou J, Conrad F, Forsyth C, et al. (2011) Neutralizing human monoclonal antibodies binding multiple serotypes of botulinum neurotoxin. Protein Engineering Design and Selection 24: 321–331.
[28]
Kumaran D, Eswaramoorthy S, Furey W, Navaza J, Sax M, et al. (2009) Domain organization in Clostridium botulinum neurotoxin type E is unique: its implication in faster translocation. Journal of molecular biology 386: 233–245.
[29]
Stenmark P, Dupuy J, Imamura A, Kiso M, Stevens RC (2008) Crystal Structure of Botulinum Neurotoxin Type A in Complex with the Cell Surface Co-Receptor GT1b—Insight into the Toxin–Neuron Interaction. PLoS pathogens 4: e1000129.
[30]
Rummel A, Mahrhold S, Bigalke H, Binz T (2004) The HCC-domain of botulinum neurotoxins A and B exhibits a singular ganglioside binding site displaying serotype specific carbohydrate interaction. Molecular microbiology 51: 631–643.
[31]
Sharma S, Zhou Y, Singh BR (2006) Cloning, expression, and purification of C-terminal quarter of the heavy chain of botulinum neurotoxin type A. Protein expression and purification 45: 288–295.
[32]
Chapman ER, An S, Edwardson JM, Jahn R (1996) A novel function for the second C2 domain of synaptotagmin. Journal of Biological Chemistry 271: 5844.
[33]
K?hler G, Milstein C (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256: 495–497.
[34]
Jin C, Hantusch B, Hemmer W, Stadlmann J, Altmann F (2008) Affinity of IgE and IgG against cross-reactive carbohydrate determinants on plant and insect glycoproteins. Journal of Allergy and Clinical Immunology 121: 185–190. e182.
[35]
Kienle E, Buschmann H (1989) Specificity, cross-reactivity and competition profile of monoclonal antibodies to staphylococcal enterotoxins B and C 1 detected by indirect enzyme-linked immunosorbent assays. Medical Microbiology and Immunology 178: 127–133.
[36]
Perosa F, Luccarelli G, Prete M, Favoino E, Ferrone S, et al. (2003) β2-microglobulin-free HLA class I heavy chain epitope mimicry by monoclonal antibody HC-10-specific peptide. The Journal of Immunology 171: 1918.
[37]
Wang H, Li T, Shi J, Cai K, Hou X, et al. (2010) A new neutralizing antibody against botulinum neurotoxin B recognizes the protein receptor binding sites for synaptotagmins II. Microbes and Infection 12: 1012–1018.