全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

An Analytical Approach for Estimating Fossil Record and Diversification Events in Sharks, Skates and Rays

DOI: 10.1371/journal.pone.0044632

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background Modern selachians and their supposed sister group (hybodont sharks) have a long and successful evolutionary history. Yet, although selachian remains are considered relatively common in the fossil record in comparison with other marine vertebrates, little is known about the quality of their fossil record. Similarly, only a few works based on specific time intervals have attempted to identify major events that marked the evolutionary history of this group. Methodology/Principal Findings Phylogenetic hypotheses concerning modern selachians’ interrelationships are numerous but differ significantly and no consensus has been found. The aim of the present study is to take advantage of the range of recent phylogenetic hypotheses in order to assess the fit of the selachian fossil record to phylogenies, according to two different branching methods. Compilation of these data allowed the inference of an estimated range of diversity through time and evolutionary events that marked this group over the past 300 Ma are identified. Results indicate that with the exception of high taxonomic ranks (orders), the selachian fossil record is by far imperfect, particularly for generic and post-Triassic data. Timing and amplitude of the various identified events that marked the selachian evolutionary history are discussed. Conclusion/Significance Some identified diversity events were mentioned in previous works using alternative methods (Early Jurassic, mid-Cretaceous, K/T boundary and late Paleogene diversity drops), thus reinforcing the efficiency of the methodology presented here in inferring evolutionary events. Other events (Permian/Triassic, Early and Late Cretaceous diversifications; Triassic/Jurassic extinction) are newly identified. Relationships between these events and paleoenvironmental characteristics and other groups’ evolutionary history are proposed.

References

[1]  Ivanov A (2005) Early Permian chondrichthyans of the Middle and South Urals. Rev Bras Pal 8(2): 127–138.
[2]  Compagno LJV (1990) Alternative life-history styles of cartilaginous fishes in time and space. Environ Biol Fish 28: 33–75 (DOI: 10.1007/BF00751027).
[3]  Maisey JG, Naylor GJP, Ward DJ (2004) Mesozoic elasmobranches, neoselachian phylogeny and the rise of modern elasmobranch diversity. In: Arratia G & Tintori A (Eds.), Mesozoic fishes 3 - Systematics, palaeoenvironments and biodiversity. Verlag Dr. Friedrich Pfeil, München, 17–56.
[4]  Wilga CD, Motta P, Sanford CP (2007) Evolution and ecology of feeding in elasmobranchs. Integr Comp Biol 47(1): 55–69 (doi: 10.1093/icb/icm029).
[5]  Cappetta H (1987) Mesozoic and Cenozoic Elasmobranchii, Chondrichthyes II. In: H-P Schultze (Ed.) Handbook of Paleoichthyology, Vol. 3B (pp. 1–193). Stuttgart: Gustav Fischer Verlag.
[6]  Naylor GJP, Marcus LF (1994) Identifying Isolated Shark Teeth of the Genus Carcharhinus to Species: Relevance for Tracking Phyletic Change Through the Fossil Record. Am Mus Novit 3109: 1–53.
[7]  Compagno LJV (1977) Phyletic relationships of living sharks and rays. Am Zool 17(2): 303–322.
[8]  Shirai S (1992) Phylogenetic Relationships of the Angel Sharks, with Comments on Elasmobranch Phylogeny (Chondrichthyes, Squatinidae). Copeia 1992(2): 505–518.
[9]  Shirai S (1996) Phylogenetic interrelationships of neoselachians (Chondrichthyes, Euselachii). In: MLJ Stiassny, LR Parenti & GD Johnson (eds). Interrelationships of fishes. Academic Press, San Diego, London, 9–34.
[10]  Arnason U, Gullberg A, Janke A (2001) Molecular phylogenetics of gnathostomous (jawed) fishes: old bones, new cartilage. Zool Scr 30(4): 249–255.
[11]  Douady CJ, Dosay M, Shivji MS, Stanhope MJ (2003) Molecular phylogenetic evidence refuting the hypothesis of Batoidea (rays and skates) as derived sharks. Mol Phylogenet Evol 26: 215–221.
[12]  Winchell CJ, Martin AP, Mallatt J (2004) Phylogeny of elasmobranch based on LSU and SSU ribosomal RNA genes. Mol Phylogenet Evol 31: 214–224.
[13]  Naylor GJP, Ryburn JA, Fedrigo O, Lopez JA (2005) Phylogenetic relationships among the major lineages of modern elasmobranchs. In: WC Hamlet (Ed.) Reproductive biology and phylogeny of Chondrichthyes: Sharks, batoids and chimaeras. Science Publishers, Enfield, NH, USA, 1–25.
[14]  Mallatt J, Winchell CJ (2007) Ribosomal RNA genes and deuterostome phylogeny revisited: More cyclostomes, elasmobranchs, reptiles, and a brittle star. Mol Phylogenet Evol 43(3): 1005–1022.
[15]  Heinicke MP, Naylor GJP, Hedges SB (2009) Cartilaginous fishes (Chondrichthyes). In: Hedges, SB and Kumar, S (Eds), The timetree of Life, 320–327 pp. Oxford University Press.
[16]  Maisey JG (1989) Hamiltonichthys mapesi, g. & sp. nov. (Chondrichthyes; Elasmobranchii), from the Upper Pennsylvanian of Kansas. Am Mus Novit 2931: 1–42.
[17]  Coates MI, Gess RW (2007) A new reconstruction of Ornychoselache traquairi, comments on early Chondrichthyan pectoral girdles and hybodontiform phylogeny. Palaeontology 50(6): 1421–1446.
[18]  Ginter M, Hampe O, Duffin CJ (2010) Chondrichthyes Paleozoic Elasmobranchii: Teeth. In: H-P Schultze (Ed.) Handbook of Paleoichthyology, Vol. 3D (pp. 168). München: Verlag F. Pfeil.
[19]  Carvalho de MR (1996) Higher-level elasmobranch phylogeny, basal squaleans, and paraphyly. In: Stiassny, MLJ, Parenti, LR, & Johnson, GD (Eds). Interrelationships of Fishes 3, Academic Press, New York. 35–62 pp.
[20]  Carvalho de MR, Maisey JG (1996) Phylogenetic relashionships of the Late Jurassic shark Protospinax WOODWARD, 1919 (Chondrichthyes: Elasmobranchii). In: Arratia G & Viohl G (eds). Mesozoic Fishes - Systematics and Palaeoecology. Verlag Dr. Friedrich Pfeil, München: 9–46.
[21]  Human BA, Owen EP, Compagno LJV, Harley EH (2006) Testing morphologically based phylogenetic theories within the cartilaginous fishes with molecular data, with special reference to the catshark family (Chondrichthyes; Scyliorhinidae) and the interrelationships within them. Mol Phylogenet Evol 39(2): 384–391.
[22]  Vélez-Zuazo X, Agnarsson I (2011) Shark tales: A molecular species-level phylogeny of sharks (Selachimorpha, Chondrichthyes). Mol Phylogenet Evol 58(2): 207–217.
[23]  Naylor GJP, Caira JN, Jensen K, Rosana KAM, Straube N, et al. (2012) Elasmobranch Phylogeny: A mitochondrial estimate based on 595 species. In: Carrier JC, Musick JA, Heithaus MR, editors. The Biology of Sharks and Their Relatives. 2nd Edition ed: CRC Press, Taylor & Francis Group. 31–56.
[24]  Cappetta H, Duffin CJ, Zidek J (1993) Chondrichthyes. In: The Fossil Record 2, Benton, MJ (Ed): 593–609.
[25]  Cappetta H (2006) Elasmobranchii Post-Triadici (index specierum et generum). In: W Riegraf (Ed). Fossilium Catalogus I: Animalia. Leiden: Blackhuys Publishers. 442 p.
[26]  Cappetta H (2012) Chondrichthyes (Mesozoic and Cenozoic Elasmobranchii: Teeth). In: H-P Schultze (Ed.) Handbook of Paleoichthyology, Vol. 3E (pp. 512). München: Verlag F. Pfeil.
[27]  Underwood CJ (2006) Diversification of the Neoselachii (Chondrichthyes) during the Jurassic and Cretaceous. Paleobiology 32(2): 215–235.
[28]  Kriwet J, Benton MJ (2004) Neoselachian (Chondrichthyes, Elasmobranchii) diversity across the Cretaceous-Tertiary boundary. Palaeogeog Palaeocl 214(2004): 181–194.
[29]  Kriwet J, Kiessling W, Klug S (2009) Diversification trajectories and evolutionary life-history traits in early sharks and batoids. P R Soc B 276: 945–951.
[30]  Raup DM (1972) Taxonomic diversity during the Phanerozoic. Science 177: 1065–1071.
[31]  Erwin DH, Valentine JW, Sepkoski JJJ (1987) A comparative study of diversification events: the early Paleozoic versus the Mesozoic. Evolution 41: 1177–1186.
[32]  Forey PL, Fortey RA, Kenrick P, Smith AB (2004) Taxonomy and fossils: a critical appraisal. Philos T Roy Soc B 359: 639–653.
[33]  Bock WJ (2004) Species: the concept, category and taxon. J Zool Syst Evol Res 42: 178–190.
[34]  Raup DM (1975) Taxonomic diversity estimation using rarefaction. Paleobiology 1(4): 333–342.
[35]  Lloyd GT, Young JR, Smith AB (2012) Taxonomic Structure of the Fossil Record is Shaped by Sampling Bias. Syst Biol 61(1): 80–89 (doi:10.1093/sysbio/syr076).
[36]  Benton MJ, Storrs GW (1994) Testing the quality of the fossil record: Paleontological knowledge is improving. Geology 22: 111–114.
[37]  R Development Core Team (2010) R: a language and environment for statistical computing. The R project for statistical computing website. Available: http://www.R-project.org. Accessed 2012 Aug 10.
[38]  Paradis E, Claude J, Strimmer K (2004) APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20(2): 289–290.
[39]  Benton MJ, Wills MA, Hitchin R (2000) Quality of the fossil record through time. Nature 403: 534–537.
[40]  Foote M (2000) Origination and extinction components of taxonomic diversity: general problems. Paleobiology 26: 578–605.
[41]  Cappetta H (1987) Extinctions et renouvellements fauniques chez les Sélaciens post-jurassiques. Mémoires de la Société géologique de France N S 150: 113–131.
[42]  Cuny G, Benton MJ (1999) Early radiation of the Neoselachian sharks in Western Europe. Geobios 32: 193–204.
[43]  Thies D, Reif W-E (1985) Phylogeny and evolutionary of Mesozoic Neoselachii. Neues Jahrbuch Geol P-A 169(3): 333–361.
[44]  Cavin L, Forey PL, Lecuyer C (2007) Correlation between environment and Late Mesozoic ray-finned fish evolution. Palaeogeography, Palaeoclimatology, Palaeoecology 245: 353–367.
[45]  Noubhani A (2010) The selachians’ faunas of the Moroccan phosphate deposits and the KT mass-extinctions. Hist Biol 22(1–3): 71–77.
[46]  Kiessling W, Aberhan M, Brenneis B, Wagner PJ (2007) Extinction trajectories of benthic organisms across the Triassic–Jurassic boundary. Palaeogeog Palaeocl 244: 201–222.
[47]  Marzoli A, Renne PR, Piccirillo EM, Ernesto M, Bellieni G, et al. (1999) Extensive 200-million-year-old continental flood basalts of the Central Atlantic Magmatic Province. Science 284: 616–618.
[48]  Whiteside JH, Olsen PE, Eglinton T, Brookfield ME, Sambrotto RN (2010) Compound-specific carbon isotopes from Earth’s largest flood basalt eruptions directly linked to the end-Triassic mass extinction. P Nat Acad Sci USA 107: 6721–6725.
[49]  Zachos J, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present. Science 292: 686–693 (DOI: 10.1126/science.1059412).
[50]  Zachos JC, Dickens GR, Zeebe RE (2008) An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451(7176): 279–283 (DOI: 10.1038/nature06588).
[51]  Tittensor DP, Mora C, Jetz W, Lotze HK, Ricard D, et al. (2010) Global patterns and predictors of marine biodiversity across taxa. Nature 466(7310): 1098–1101 (DOI: 10.1038/nature09329).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133