全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

A Peak-Clustering Method for MEG Group Analysis to Minimise Artefacts Due to Smoothness

DOI: 10.1371/journal.pone.0045084

Full-Text   Cite this paper   Add to My Lib

Abstract:

Magnetoencephalography (MEG), a non-invasive technique for characterizing brain electrical activity, is gaining popularity as a tool for assessing group-level differences between experimental conditions. One method for assessing task-condition effects involves beamforming, where a weighted sum of field measurements is used to tune activity on a voxel-by-voxel basis. However, this method has been shown to produce inhomogeneous smoothness differences as a function of signal-to-noise across a volumetric image, which can then produce false positives at the group level. Here we describe a novel method for group-level analysis with MEG beamformer images that utilizes the peak locations within each participant’s volumetric image to assess group-level effects. We compared our peak-clustering algorithm with SnPM using simulated data. We found that our method was immune to artefactual group effects that can arise as a result of inhomogeneous smoothness differences across a volumetric image. We also used our peak-clustering algorithm on experimental data and found that regions were identified that corresponded with task-related regions identified in the literature. These findings suggest that our technique is a robust method for group-level analysis with MEG beamformer images.

References

[1]  Gross J, Kujala J, Hamalainen M, Timmermann L, Schnitzler A, et al. (2001) Dynamic imaging of coherent sources: studying neural interactions in the human brain. Proc Natl Acad Sci U S A 98: 694–699.
[2]  Barnes GR, Hillebrand A (2003) Statistical flattening of MEG beamformer images. Hum Brain Mapp 18: 1–12.
[3]  Barnes GR, Hillebrand A, Fawcett IP, Singh KD (2004) Realistic spatial sampling for MEG beamformer images. Hum Brain Mapp 23: 120–127.
[4]  Worsley KJ, Andermann M, Koulis T, MacDonald D, Evans AC (1999) Detecting changes in nonisotropic images. Human Brain Mapping 8: 98–101.
[5]  Hayasaka S, Phan KL, Liberzon I, Worsley KJ, Nichols TE (2004) Nonstationary cluster-size inference with random field and permutation methods. Neuroimage 22: 676–687.
[6]  Pantazis D, Nichols TE, Baillet S, Leahy RM (2005) A comparison of random field theory and permutation methods for the statistical analysis of MEG data. Neuroimage 25: 383–394.
[7]  Litvak V, Zeller D, Oostenveld R, Maris E, Cohen A, et al. (2007) LTP-like changes induced by paired associative stimulation of the primary somatosensory cortex in humans: Source analysis and associated changes in behavior. Eur J Neurosci 25: 2862–2874.
[8]  Mattout J, Henson RN, Friston KJ (2007) Canonical source reconstruction for MEG. Comput Intell Neurosci 2007: 67613.
[9]  Vrba J, Robinson SE (2001) Signal processing in magnetoencephalography. Methods 25: 249–271.
[10]  Van Veen BD, van Drongelen W, Yucktman M, Suzuki A (1997) Localization of brain electrical activity via linearly constrained minimum variance spatial filtering. IEEE Trans Biomed Eng 44: 867–880.
[11]  Sekihara K, Nagarajan SS, Poeppel D, Marantz A (2004) Asymptotic SNR of scalar and vector minimum-variance beamformers for neuromagnetic source reconstruction. IEEE Trans Biomed Eng 51: 1726–1734.
[12]  Woolrich M, Hunt L, Groves A, Barnes G (2011) MEG beamforming using Bayesian PCA for adaptive data covariance matrix regularization. NeuroImage 57: 1466–1479.
[13]  Price CJ, Noppeney U, Phillips J, Devlin JT (2003) How is the fusiform gyrus related to category-specificity? Cognitive Neuropsychology 20: 561–574.
[14]  Gerlach C, Law I, Paulson OB (2006) Shape configuration and category-specificity. Neuropsychologia 44: 1247–1260.
[15]  Simmons WK, Barsalou LW (2003) The similarity-in-topography principle: Reconciling theories of conceptual deficits. Cognitive Neuropsychology 20: 451–486.
[16]  Tyler LK, Stamatakis EA, Bright P, Acres K, Abdallah S, et al. (2004) Processing objects at different levels of specificity. Journal of Cognitive Neuroscience 16: 351–362.
[17]  Moss HE, Rodd JM, Stamatakis EA, Bright P, Tyler LK (2005) Anteromedial temporal cortex supports fine-grained differentiation among objects. Cerebral Cortex 15: 616–627.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133