全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

Adaptive Evolution of the FADS Gene Cluster within Africa

DOI: 10.1371/journal.pone.0044926

Full-Text   Cite this paper   Add to My Lib

Abstract:

Long chain polyunsaturated fatty acids (LC-PUFAs) are essential for brain structure, development, and function, and adequate dietary quantities of LC-PUFAs are thought to have been necessary for both brain expansion and the increase in brain complexity observed during modern human evolution. Previous studies conducted in largely European populations suggest that humans have limited capacity to synthesize brain LC-PUFAs such as docosahexaenoic acid (DHA) from plant-based medium chain (MC) PUFAs due to limited desaturase activity. Population-based differences in LC-PUFA levels and their product-to-substrate ratios can, in part, be explained by polymorphisms in the fatty acid desaturase (FADS) gene cluster, which have been associated with increased conversion of MC-PUFAs to LC-PUFAs. Here, we show evidence that these high efficiency converter alleles in the FADS gene cluster were likely driven to near fixation in African populations by positive selection ~85 kya. We hypothesize that selection at FADS variants, which increase LC-PUFA synthesis from plant-based MC-PUFAs, played an important role in allowing African populations obligatorily tethered to marine sources for LC-PUFAs in isolated geographic regions, to rapidly expand throughout the African continent 60–80 kya.

References

[1]  Forster P (2004) Ice Ages and the mitochondrial DNA chronology of human dispersals: a review. Philos Trans R Soc Lond B Biol Sci 359: 255–264; discussion 264.
[2]  Macaulay V, Hill C, Achilli A, Rengo C, Clarke D, et al. (2005) Single, rapid coastal settlement of Asia revealed by analysis of complete mitochondrial genomes. Science 308: 1034–1036.
[3]  Watson E, Forster P, Richards M, Bandelt HJ (1997) Mitochondrial footprints of human expansions in Africa. Am J Hum Genet 61: 691–704.
[4]  Salas A, Richards M, De la Fe T, Lareu MV, Sobrino B, et al. (2002) The making of the African mtDNA landscape. Am J Hum Genet 71: 1082–1111.
[5]  Forster P, Matsumura S (2005) Evolution. Did early humans go north or south? Science 308: 965–966.
[6]  Kivisild T, Shen P, Wall DP, Do B, Sung R, et al. (2006) The role of selection in the evolution of human mitochondrial genomes. Genetics 172: 373–387.
[7]  Mellars P (2006) Why did modern human populations disperse from Africa ca. 60,000 years ago? A new model. Proc Natl Acad Sci U S A 103: 9381–9386.
[8]  Broadhurst CL, Wang Y, Crawford MA, Cunnane SC, Parkington JE, et al. (2002) Brain-specific lipids from marine, lacustrine, or terrestrial food resources: potential impact on early African Homo sapiens. Comp Biochem Physiol B Biochem Mol Biol 131: 653–673.
[9]  Crawford MA, Bloom M, Broadhurst CL, Schmidt WF, Cunnane SC, et al. (1999) Evidence for the unique function of docosahexaenoic acid during the evolution of the modern hominid brain. Lipids 34 Suppl: S39–47
[10]  Innis SM (2011) Metabolic programming of long-term outcomes due to fatty acid nutrition in early life. Matern Child Nutr 7 Suppl 2112–123.
[11]  Burdge GC (2006) Metabolism of alpha-linolenic acid in humans. Prostaglandins Leukot Essent Fatty Acids 75: 161–168.
[12]  Brenna JT, Salem N Jr, Sinclair AJ, Cunnane SC (2009) alpha-Linolenic acid supplementation and conversion to n-3 long-chain polyunsaturated fatty acids in humans. Prostaglandins Leukot Essent Fatty Acids 80: 85–91.
[13]  Carlson BA, Kingston JD (2007) Docosahexaenoic acid biosynthesis and dietary contingency: Encephalization without aquatic constraint. Am J Hum Biol 19: 585–588.
[14]  Cunnane SC, Plourde M, Stewart K, Crawford MA (2007) Docosahexaenoic acid and shore-based diets in hominin encephalization: a rebuttal. Am J Hum Biol 19: 578–581.
[15]  Crawford MA (2006) Docosahexaenoic acid in neural signaling systems. Nutr Health 18: 263–276.
[16]  Sergeant S, Hugenschmidt CE, Rudock ME, Ziegler JT, Ivester P, et al. (2012) Differences in arachidonic acid levels and fatty acid desaturase (FADS) gene variants in African Americans and European Americans with diabetes or the metabolic syndrome. Br J Nutr 107: 547–555.
[17]  Mathias RA, Sergeant S, Ruczinski I, Torgerson DG, Hugenschmidt CE, et al. (2011) The impact of FADS genetic variants on omega6 polyunsaturated fatty acid metabolism in African Americans. BMC Genet 12: 50.
[18]  Glaser C, Lattka E, Rzehak P, Steer C, Koletzko B (2011) Genetic variation in polyunsaturated fatty acid metabolism and its potential relevance for human development and health. Matern Child Nutr 7 Suppl 227–40.
[19]  Pickrell JK, Coop G, Novembre J, Kudaravalli S, Li JZ, et al. (2009) Signals of recent positive selection in a worldwide sample of human populations. Genome Res 19: 826–837.
[20]  Tanaka T, Shen J, Abecasis GR, Kisialiou A, Ordovas JM, et al. (2009) Genome-wide association study of plasma polyunsaturated fatty acids in the InCHIANTI Study. PLoS Genet 5: e1000338.
[21]  Schadt EE, Molony C, Chudin E, Hao K, Yang X, et al. (2008) Mapping the genetic architecture of gene expression in human liver. PLoS Biol 6: e107.
[22]  Flinn MV, Geary DC, Ward CV (2005) Ecological dominance, social competition, and coalitionary arms races: Why humans evolved extraordinary intelligence. Evolut Human Behav 26: 10–46.
[23]  Cordain L, Watkins BA, Mann NJ (2001) Fatty acid composition and energy density of foods available to African hominids. Evolutionary implications for human brain development. World Rev Nutr Diet 90: 144–161.
[24]  Campbell MC, Tishkoff SA (2008) African genetic diversity: implications for human demographic history, modern human origins, and complex disease mapping. Annu Rev Genomics Hum Genet 9: 403–433.
[25]  Brenna JT, Salem NJ, Sinclair AJ, Cunnane SC (2009) alpha-Linolenic acid supplementation and conversion to n-3 long-chain polyunsaturated fatty acids in humans. Prostaglandins Leukot Essent Fatty Acids 80: 85–91.
[26]  Klein RG (2000) Archeology and the evolution of human behavior. Evol Anthropol 9: 17–36.
[27]  Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123: 585–595.
[28]  Fay JC, Wu CI (2000) Hitchhiking under positive Darwinian selection. Genetics 155: 1405–1413.
[29]  Neel JV, Ward RH (1972) The genetic structure of a tribal population, the Yanomama Indians. VI. Analysis by F-statistics (including a comparison with the Makiritare and Xavante). Genetics 72: 639–666.
[30]  Charlesworth B, Morgan MT, Charlesworth D (1993) The effect of deleterious mutations on neutral molecular variation. Genetics 134: 1289–1303.
[31]  Thousand Genomes Consortium (2010) A map of human genome variation from population-scale sequencing. Nature 467: 1061–1073.
[32]  Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21: 263–265.
[33]  Bandelt HJ, Forster P, Rohl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16: 37–48.
[34]  Bandelt HJ, Forster P, Sykes BC, Richards MB (1995) Mitochondrial portraits of human populations using median networks. Genetics 141: 743–753.
[35]  Voight BF, Kudaravalli S, Wen X, Pritchard JK (2006) A map of recent positive selection in the human genome. PLoS Biol 4: e72.
[36]  Sabeti PC, Varilly P, Fry B, Lohmueller J, Hostetter E, et al. (2007) Genome-wide detection and characterization of positive selection in human populations. Nature 449: 913–918.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133