Flavonoids have attracted considerable attention in relation to their effects upon health. 8-Prenylnaringenin (8-PN) is found in the common hop (Humulus lupulus) and assumed to be responsible for the health impact of beer consumption. We wanted to clarify the effects of prenylation on the physiological functions of dietary flavonoids by comparing the effects of 8-PN with that of intact naringenin in the prevention of disuse muscle atrophy using a model of denervation in mice. Consumption of 8-PN (but not naringenin) prevented loss of weight in the gastrocnemius muscle further supported by the lack of induction of the protein content of a key ubiquitin ligase involved in muscle atrophy, atrogin-1, and by the activation of Akt phosphorylation. 8-PN content in the gastrocnemius muscle was tenfold higher than that of naringenin. These results suggested that, compared with naringenin, 8-PN was effectively concentrated into skeletal muscle to exert its preventive effects upon disuse muscle atrophy. It is likely that prenylation generates novel functions for 8-PN by enhancing its accumulation into muscle tissue through dietary intake.
References
[1]
Mukai R, Nakao R, Yamamoto H, Nikawa T, Takeda E, et al. (2010) Quercetin Prevents Unloading-Derived Disused Muscle Atrophy by Attenuating the Induction of Ubiquitin Ligases in Tail-Suspension Mice. J Nat Prod73: 1708–1710.
[2]
Terao J (2009) Dietary flavonoids as antioxidants. Forum Nutr 61: 87–94.
[3]
Barron D, Ibrahim RK (1996) Isoprenylated flavonoids – A survey. Phytochemistry 43: 921–982.
[4]
Botta B, Vitali A, Menendez P, Misiti D, Delle Monache G (2005) Prenylated flavonoids: Pharmacology and biotechnology. Current Medicinal Chemistry 12: 713–739.
[5]
Huang X, Zhu D, Lou Y (2007) A novel anticancer agent, icaritin, induced cell growth inhibition, G1 arrest and mitochondrial transmembrane potential drop in human prostate carcinoma PC-3 cells. Eur J Pharmacol 564: 26–36.
[6]
Kuroyanagi M, Arakawa T, Hirayama Y, Hayashi T (1999) Antibacterial and antiandrogen flavonoids from Sophora flavescens. J Nat Prod 62: 1595–1599.
[7]
Lee MH, Kim JY, Ryu JH (2005) Prenylflavones from Psoralea corylifolia inhibit nitric oxide synthase expression through the inhibition of I-kappaB-alpha degradation in activated microglial cells. Biol Pharm Bull 28: 2253–2257.
[8]
Lee HJ, Lyu da H, Koo U, Nam KW, Hong SS, et al. (2012) Protection of prenylated flavonoids from Mori Cortex Radicis (Moraceae) against nitric oxide-induced cell death in neuroblastoma SH-SY5Y cells. Archives of Pharmacal Research 35: 163–170.
[9]
Kretzschmar G, Zierau O, Wober J, Tischer S, Metz P, et al. (2010) Prenylation has a compound specific effect on the estrogenicity of naringenin and genistein. Journal of Steroid Biochemistry and Molecular Biology 118: 1–6.
[10]
Arung ET, Shimizu K, Tanaka H, Kondo R (2010) 3-Prenyl luteolin, a new prenylated flavone with melanin biosynthesis inhibitory activity from wood of Artocarpus heterophyllus. Fitoterapia 81: 640–643.
[11]
Sasaki K, Mito K, Ohara K, Yamamoto H, Yazaki K (2008) Cloning and characterization of naringenin 8-prenyltransferase, a flavonoid-specific prenyltransferase of Sophora flavescens. Plant Physiol 146: 1075–1084.
[12]
Stevens JF, Taylor AW, Deinzer ML (1999) Quantitative analysis of xanthohumol and related prenylflavonoids in hops and beer by liquid chromatography tandem mass spectrometry. Journal of Chromatography A 832: 97–107.
[13]
Stevens JF, Taylor AW, Clawson JE, Deinzer ML (1999) Fate of xanthohumol and related prenylflavonoids from hops to beer. J Agric Food Chem 47: 2421–2428.
[14]
Guo J, Nikolic D, Chadwick LR, Pauli GF, van Breemen RB (2006) Identification of human hepatic cytochrome P450 enzymes involved in the metabolism of 8-prenylnaringenin and isoxanthohumol from hops (Humulus lupulus L.). Drug Metab Dispos 34: 1152–1159.
[15]
Bolca S, Possemiers S, Maervoet V, Huybrechts I, Heyerick A, et al. (2007) Microbial and dietary factors associated with the 8-prenylnaringenin producer phenotype: a dietary intervention trial with fifty healthy post-menopausal Caucasian women. British Journal of Nutrition 98: 950–959.
[16]
Possemiers S, Bolca S, Grootaert C, Heyerick A, Decroos K, et al. (2006) The prenylflavonoid isoxanthohumol from hops (Humulus lupulus L.) is activated into the potent phytoestrogen 8-prenylnaringenin in vitro and in the human intestine. J Nutr 136: 1862–1867.
[17]
Bowe J, Li XF, Kinsey-Jones J, Heyerick A, Brain S, et al. (2006) The hop phytoestrogen, 8-prenylnaringenin, reverses the ovariectomy-induced rise in skin temperature in an animal model of menopausal hot flushes. J Endocrinol 191: 399–405.
[18]
Humpel M, Isaksson P, Schaefer O, Kaufmann U, Ciana P, et al. (2005) Tissue specificity of 8-prenylnaringenin: protection from ovariectomy induced bone loss with minimal trophic effects on the uterus. J Steroid Biochem Mol Biol 97: 299–305.
[19]
Amer DA, Kretzschmar G, Muller N, Stanke N, Lindemann D, et al. (2010) Activation of transgenic estrogen receptor-beta by selected phytoestrogens in a stably transduced rat serotonergic cell line. J Steroid Biochem Mol Biol 120: 208–217.
[20]
Kawamura T, Hayashi M, Mukai R, Terao J, Nemoto H (2012) An Efficient Method for C8-Prenylation of Flavonols and Flavanones. Synthesis 44: 1308–1314.
[21]
Tomas-Barberen FA, Clifford MN (2000) Flavanones, chalcones and dihydrochalcones - nature, occurrence and dietary burden. Journal of the Science of Food and Agriculture 80: 1073–1080.
[22]
McClung JM, Davis JM, Wilson MA, Goldsmith EC, Carson JA (2006) Estrogen status and skeletal muscle recovery from disuse atrophy. J Appl Physiol 100: 2012–2023.
[23]
Brown M, Foley A, Ferreria JA (2005) Ovariectomy, hindlimb unweighting, and recovery effects on skeletal muscle in adult rats. Aviat Space Environ Med 76: 1012–1018.
[24]
Gomes MD, Lecker SH, Jagoe RT, Navon A, Goldberg AL (2001) Atrogin-1, a muscle-specific F-box protein highly expressed during muscle atrophy. Proceedings of the National Academy of Sciences of the United States of America 98: 14440–14445.
[25]
Bodine SC, Latres E, Baumhueter S, Lai VK, Nunez L, et al. (2001) Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 294: 1704–1708.
[26]
Sandri M, Sandri C, Gilbert A, Skurk C, Calabria E, et al. (2004) Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell 117: 399–412.
[27]
Senf SM, Dodd SL, McClung JM, Judge AR (2008) Hsp70 overexpression inhibits NF-kappaB and Foxo3a transcriptional activities and prevents skeletal muscle atrophy. FASEB Journal 22: 3836–3845.
[28]
Stitt TN, Drujan D, Clarke BA, Panaro F, Timofeyva Y, et al. (2004) The IGF-1/PI3K/Akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors. Molecular Cell 14: 395–403.
[29]
Bodine SC, Stitt TN, Gonzalez M, Kline WO, Stover GL, et al. (2001) Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat Cell Biol 3: 1014–1019.
[30]
McClung JM, Davis JM, Wilson MA, Goldsmith EC, Carson JA (2006) Estrogen status and skeletal muscle recovery from disuse atrophy. Journal of Applied Physiology 100: 2012–2023.
[31]
Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72: 248–254.
[32]
Zhang P, Chen X, Fan M (2007) Signaling mechanisms involved in disuse muscle atrophy. Med Hypotheses 69: 310–321.
[33]
English KL, Paddon-Jones D (2010) Protecting muscle mass and function in older adults during bed rest. Curr Opin Clin Nutr Metab Care 13: 34–39.
[34]
Fang T, Wang Y, Ma Y, Su W, Bai Y, et al. (2006) A rapid LC/MS/MS quantitation assay for naringin and its two metabolites in rats plasma. J Pharm Biomed Anal 40: 454–459.
[35]
Hsiu SL, Huang TY, Hou YC, Chin DH, Chao PD (2002) Comparison of metabolic pharmacokinetics of naringin and naringenin in rabbits. Life Sci 70: 1481–1489.
[36]
Rad M, Humpel M, Schaefer O, Schoemaker RC, Schleuning WD, et al. (2006) Pharmacokinetics and systemic endocrine effects of the phyto-oestrogen 8-prenylnaringenin after single oral doses to postmenopausal women. Br J Clin Pharmacol 62: 288–296.
[37]
Williamson G, Barron D, Shimoi K, Terao J (2005) In vitro biological properties of flavonoid conjugates found in vivo. Free Radical Research 39: 457–469.
[38]
Bieger J, Cermak R, Blank R, de Boer VC, Hollman PC, et al. (2008) Tissue distribution of quercetin in pigs after long-term dietary supplementation. J Nutr 138: 1417–1420.
[39]
Shimoi K, Nakayama T (2005) Glucuronidase deconjugation in inflammation. Methods Enzymol 400: 263–272.
[40]
Terao J, Murota K, Kawai Y (2011) Conjugated quercetin glucuronides as bioactive metabolites and precursors of aglycone in vivo. Food Funct 2: 11–17.
[41]
Menendez C, Duenas M, Galindo P, Gonzalez-Manzano S, Jimenez R, et al. (2011) Vascular deconjugation of quercetin glucuronide: the flavonoid paradox revealed? Mol Nutr Food Res 55: 1780–1790.
Pang Y, Nikolic D, Zhu D, Chadwick LR, Pauli GF, et al. (2007) Binding of the hop (Humulus lupulus L.) chalcone xanthohumol to cytosolic proteins in Caco-2 intestinal epithelial cells. Mol Nutr Food Res 51: 872–879.
[44]
Milligan SR, Kalita JC, Pocock V, Van de Kauter V, Stevens JF, et al. (2000) The endocrine activities of 8-prenylnaringenin and related hop (Humulus lupulus L.) flavonoids. Journal of Clinical Endocrinology & Metabolism 85: 4912–4915.
[45]
Milligan SR, Kalita JC, Heyerick A, Rong H, De Cooman L, et al. (1999) Identification of a potent phytoestrogen in hops (Humulus lupulus L.) and beer. Journal of Clinical Endocrinology & Metabolism 84: 2249–2252.
[46]
Coldham NG, Sauer MJ (2001) Identification, quantitation and biological activity of phytoestrogens in a dietary supplement for breast enhancement. Food and Chemical Toxicology 39: 1211–1224.
[47]
Rommel C, Bodine SC, Clarke BA, Rossman R, Nunez L, et al. (2001) Mediation of IGF-1-induced skeletal myotube hypertrophy by PI(3)K/Akt/mTOR and PI(3)K/Akt/GSK3 pathways. Nat Cell Biol 3: 1009–1013.
[48]
Bolca S, Li J, Nikolic D, Roche N, Blondeel P, et al. (2010) Disposition of hop prenylflavonoids in human breast tissue. Mol Nutr Food Res 54 Suppl 2S284–294.