[1] | Palumbi SR (2001) Evolution - Humans as the world's greatest evolutionary force. Science 293: 1786–1790.
|
[2] | Maragakis LL, Perencevich EN, Cosgrove SE (2008) Clinical and economic burden of antimicrobial resistance. Expert Rev of Anti-Infect Ther 6: 751–763.
|
[3] | Fischbach MA, Walsh CT (2009) Antibiotics for Emerging Pathogens. Science 325: 1089–1093.
|
[4] | Yount NY, Bayer AS, Xiong YQ, Yeaman MR (2006) Advances in antimicrobial peptide immunobiology. Biopolymers 84: 435–458.
|
[5] | Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415: 389–395.
|
[6] | Martin DR, Williams RJ (1976) Chemical nature and sequence of alamethicin. Biochem J 153: 181–190.
|
[7] | Primor N, Tu AT (1980) Conformation of pardaxin, the toxin of the flatfish Pardachirus marmoratus. Biochim Biophys Acta 626: 299–306.
|
[8] | Gibson TR, Glembotski CC (1985) Acetylation of Alpha-Msh and Beta-Endorphin by Rat Neurointermediate Pituitary Secretory Granule-Associated Acetyltransferase. Peptides 6: 615–620.
|
[9] | Dubos RJ, Hotchkiss RD (1941) J Exp Med. 73: 629.
|
[10] | Nielsen SB, Otzen DE (2010) Impact of the antimicrobial peptide Novicidin on membrane structure and integrity. J Colloid Interf Sci 345: 248–256.
|
[11] | Matsuzaki K (1998) Magainins as paradigm for the mode of action of pore forming polypeptides. Biochim Biophys Acta 1376: 391–400.
|
[12] | He K, Ludtke SJ, Huang HW, Worcester DL (1995) Antimicrobial Peptide Pores in Membranes Detected by Neutron Inplane Scattering. Biochemistry 34: 15614–15618.
|
[13] | Oren Z, Shai Y (1998) Mode of action of linear amphipathic alpha-helical antimicrobial peptides. Biopolymers 47: 451–463.
|
[14] | Matsuzaki K, Murase O, Fujii N, Miyajima K (1996) An antimicrobial peptide, magainin 2, induced rapid flip-flop of phospholipids coupled with pore formation and peptide translocation. Biochemistry 35: 11361–11368.
|
[15] | Ludtke SJ, He K, Heller WT, Harroun TA, Yang L, et al. (1996) Membrane pores induced by magainin. Biochemistry 35: 13723–13728.
|
[16] | Opella SJ, Marassi FM (2004) Structure determination of membrane proteins by NMR spectroscopy. Chem Rev 104: 3587–3606.
|
[17] | Park SH, Mrse AA, Nevzorov AA, De Angelis AA, Opella SJ (2006) Rotational diffusion of membrane proteins in aligned phospholipid bilayers by solid-state NMR spectroscopy. J Magn Reson 178: 162–165.
|
[18] | Bertelsen K, Paaske B, Th?gersen L, Tajkhorshid E, Schi?tt B, et al. (2009) Residue-Specific Information about the Dynamics of Antimicrobial Peptides from 1H?àí15N and 2H Solid-State NMR Spectroscopy. J Am Chem Soc 131: 18335–18342.
|
[19] | Strandberg E, Esteban-Martìn S, Salgado J, Ulrich AS (2009) Orientation and Dynamics of Peptides in Membranes Calculated from 2H-NMR Data. Biophys J 96: 3223–3232.
|
[20] | Soubias O, Jolibois F, Massou S, Milon A, Réat V (2005) Determination of the Orientation and Dynamics of Ergosterol in Model Membranes Using Uniform 13C Labeling and Dynamically Averaged 13C Chemical Shift Anisotropies as Experimental Restraints. Biophys J 89: 1120–1131.
|
[21] | Seelig J (1977) Deuterium magnetic resonance: theory and applications to lipid membranes. Q Rev Biophys 10: 353–418.
|
[22] | Brown MF, Seelig J (1978) Deuterium Nmr of Lipid Bilayers - Head Group Conformation, Effect of Ions and Cholesterol, Relaxation Rate Studies. Biophys J 21: A205–A205.
|
[23] | Davis JH (1983) The description of membrane lipid conformation, order and dynamics by 2H-NMR. Biochim Biophys Acta 737: 117–171.
|
[24] | Saint-Laurent A, Boudreau N, R CG, Poyet P, Auger M (1998) Interaction between lipid bilayers and a new class of antineoplastic agents derived from arylchloroethylurea: a 2H solid-state NMR study. Biochem Cell Biol 76: 465–471.
|
[25] | Seelig J (1978) 31P nuclear magnetic resonance and the head group structure of phospholipids in membranes. Biochim Biophys Acta 515: 105–140.
|
[26] | Fenske DB, Jarrell HC (1991) Phosphorous-31 two-dimensional solid-state NMR: Application to model membrane and biological systems. Biophys J 59: 55–69.
|
[27] | Picard F, Pezolet M, Bougis PE, Auger M (1996) Model of interaction between a cardiotoxin and dimyristoylphosphatidic acid bilayers determined by solid-state 31P NMR spectroscopy. Biophys J 70: 1737–1744.
|
[28] | Wi S, Kim C (2008) Pore Structure, Thinning Effect, and Lateral Diffusive Dynamics of Oriented Lipid Membranes Interacting with Antimicrobial Peptide Protegrin-1: 31P and 2H Solid-State NMR Study. J Phys Chem B 112: 11402–11414.
|
[29] | Vad B, Thomsen LA, Bertelsen K, Franzmann M, Pedersen JM, et al. (2010) Divorcing folding from function: how acylation affects the membrane-perturbing properties of an antimicrobial peptide. Biochim Biophys Acta 1804: 806–820.
|
[30] | Cafiso DS (1994) Alamethicin: a peptide model for voltage gating and protein-membrane interactions. Annu Rev Biophys Biomol Struct 23: 141–165.
|
[31] | Mohr H, Kleinkauf H (1978) Alamethicin biosynthesis: acetylation of the amino terminus and attachment of phenylalaninol. Biochim Biophys Acta 526: 375–386.
|
[32] | Fox RO Jr, Richards FM (1982) A voltage-gated ion channel model inferred from the crystal structure of alamethicin at 1.5-A resolution. Nature 300: 325–330.
|
[33] | Smith SO, Peersen OB (1992) Solid-state NMR approaches for studying membrane protein structure. Annu Rev Biophys Biomol Struct 21: 25–47.
|
[34] | Bechinger B, Skladnev DA, Ogrel A, Li X, Rogozhkina EV, et al. (2001) 15N and 31P solid-state NMR investigations on the orientation of zervamicin II and alamethicin in phosphatidylcholine membranes. Biochemistry 40: 9428–9437.
|
[35] | Bak M, Bywater RP, Hohwy M, Thomsen JK, Adelhorst K, et al. (2001) Conformation of alamethicin in oriented phospholipid bilayers determined by (15)N solid-state nuclear magnetic resonance. Biophys J 81: 1684–1698.
|
[36] | Bertelsen K, Pedersen JM, Rasmussen BS, Skrydstrup T, Nielsen NC, et al. (2007) Membrane-Bound Conformation of Peptaibols with Methyl-Deuterated α-Amino Isobutyric Acids by 2H Magic Angle Spinning Solid-State NMR Spectroscopy. J Am Chem Soc 129: 14717–14723.
|
[37] | Vosegaard T, Bertelsen K, Pedersen JM, Th?gersen L, Schi?tt B, et al. (2008) Resolution Enhancement in Solid-State NMR of Oriented Membrane Proteins by Anisotropic Differential Linebroadening. J Am Chem Soc 130: 5028–5029.
|
[38] | Salnikov ES, Friedrich H, Li X, Bertani P, Reissmann S, et al. (2009) Structure and Alignment of the Membrane-Associated Peptaibols Ampullosporin A and Alamethicin by Oriented 15N and 31P Solid-State NMR Spectroscopy. Biophys J 96: 86–100.
|
[39] | Dittmer J, Th?gersen L, Underhaug J, Bertelsen K, Vosegaard T, et al. (2009) Incorporation of antimicrobial peptides into membranes: A combined liquid-state NMR and molecular dynamics study of Alamethicin in DMPC/DHPC bicelles. J Phys Chem B 113: 6928–6937.
|
[40] | Toraya S, Nishimura K, Naito A (2004) Dynamic Structure of Vesicle-Bound Melittin in a Variety of Lipid Chain Lengths by Solid-State NMR. Biophys J 87: 3323–3335.
|
[41] | Aisenbrey C, Bechinger B (2004) Investigations of Polypeptide Rotational Diffusion in Aligned Membranes by 2H and 15N Solid-State NMR Spectroscopy. J Am Chem Soc 126: 16676–16683.
|
[42] | Cady SD, Goodman C, Tatko CD, DeGrado WF, Hong M (2007) Determining the Orientation of Uniaxially Rotating Membrane Proteins Using Unoriented Samples: A 2H, 13C, and 15N Solid-State NMR Investigation of the Dynamics and Orientation of a Transmembrane Helical Bundle. J Am Chem Soc 129: 5719–5729.
|
[43] | Sani M-A, Separovic F, Gehman JD (2011) Disentanglement of Heterogeneous Dynamics in Mixed Lipid Systems. Biophys J 100: L40–L42.
|
[44] | Park SH, Prytulla S, De Angelis AA, Brown JM, Kiefer H, et al. (2006) High-resolution NMR spectroscopy of a GPCR in aligned bicelles. J Am Chem Soc 128: 7402–7403.
|
[45] | Soong R, Smith PE, Xu J, Yamamoto K, Im SC, et al. (2010) Proton-evolved local-field solid-state NMR studies of cytochrome b5 embedded in bicelles, revealing both structural and dynamical information. J Am Chem Soc 132: 5779–5788.
|
[46] | Hong M, Doherty T (2006) Orientation determination of membrane-disruptive proteins using powder samples and rotational diffusion: A simple solid-state NMR approach. Chem Phys Lett 432: 296–300.
|
[47] | Prongidi-Fix L, Bertani P, Bechinger B (2007) The Membrane Alignment of Helical Peptides from Non-oriented 15N Chemical Shift Solid-State NMR Spectroscopy. J Am Chem Soc 129: 8430–8431.
|
[48] | Bak M, Rasmussen JT, Nielsen NC (2000) SIMPSON: a general simulation program for solid-state NMR spectroscopy. J Magn Reson 147: 296–330.
|
[49] | Herzfeld J, Griffin RG, Haberkorn RA (1978) Phosphorus-31 chemical-shift tensors in barium diethyl phosphate and urea-phosphoric acid: model compounds for phospholipid head-group studies. Biochemistry 17: 2711–2718.
|
[50] | Griffin RG (1976) Letter: Observation of the effect of water on the 31P nuclear magnetic resonance spectra of dipalmitoyllecithin. J Am Chem Soc 98: 851–853.
|
[51] | MATLAB?. MathWorks Inc.
|
[52] | Vosegaard T, Malmendal A, Nielsen NC (2002) The Flexibility of SIMPSON and SIMMOL for Numerical Simulations in Solid-and Liquid-State NMR Spectroscopy. Monatsh Chem 133: 1555–1574.
|
[53] | Tosner Z, Vosegaard T, Kehlet C, Khaneja N, Glaser SJ, et al. (2009) Optimal control in NMR spectroscopy: Numerical implementation in SIMPSON. J Magn Reson 197: 120–134.
|
[54] | Bertelsen K, Vad B, Nielsen EH, Hansen SK, Skrydstrup T, et al. (2011) Long-Term-Stable Ether-Lipid vs Conventional Ester-Lipid Bicelles in Oriented Solid-State NMR: Altered Structural Information in Studies of Antimicrobial Peptides. J Phys Chem B 115: 1767–1774.
|
[55] | Fung BM, Khitrin AK, Ermolaev K (2000) An Improved Broadband Decoupling Sequence for Liquid Crystals and Solids. J Magn Reson 142: 97–101.
|
[56] | Th?gersen L, Schi?tt B, Vosegaard T, Nielsen NC, Tajkhorshid E (2008) Peptide Aggregation and Pore Formation in a Lipid Bilayer: A Combined Coarse-Grained and All Atom Molecular Dynamics Study. Biophys J 95: 4337–4347.
|
[57] | Prenner EJ, Lewis RNAH, Neuman KC, Gruner SM, Kondejewski LH, et al. (1997) Nonlamellar Phases Induced by the Interaction of Gramicidin S with Lipid Bilayers. A Possible Relationship to Membrane-Disrupting Activity???. Biochemistry 36: 7906–7916.
|
[58] | Haney EF, Nathoo S, Vogel HJ, Prenner EJ (2010) Induction of non-lamellar lipid phases by antimicrobial peptides: a potential link to mode of action. Chem Phys Lipids 163: 82–93.
|
[59] | Nielsen NC, Daugaard P, Langer V, Thomsen JK, Nielsen S, et al. (1995) A flat-coil NMR probe with hydration control of oriented phospholipid bilayer samples. Journal of Biomolecular NMR 5: 311–314.
|
[60] | Glaubitz C, Watts A (1998) Magic angle-oriented sample spinning (MAOSS): A new approach toward biomembrane studies. J Magn Reson 130: 305–316.
|
[61] | He K, Ludtke SJ, Heller WT, Huang HW (1996) Mechanism of alamethicin insertion into lipid bilayers. Biophys J 71: 2669–2679.
|
[62] | Hallock KJ, Lee DK, Ramamoorthy A (2003) MSI-78, an analogue of the magainin antimicrobial peptides, disrupts lipid bilayer structure via positive curvature strain. Biophys J 84: 3052–3060.
|
[63] | Sansom MS (1993) Alamethicin and related peptaibols–model ion channels. Eur Biophys J 22: 105–124.
|
[64] | Tieleman DP, Breed J, Berendsen HJ, Sansom MS (1998) Alamethicin channels in a membrane: molecular dynamics simulations. Faraday Discuss: 209–223.
|
[65] | Paramasivam S, Suiter CL, Hou G, Sun S, Palmer M, et al. (2012) Enhanced Sensitivity by Nonuniform Sampling Enables Multidimensional MAS NMR Spectroscopy of Protein Assemblies. J Phys Chem B 116: 7416–7427.
|