全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

Catecholate Siderophores Protect Bacteria from Pyochelin Toxicity

DOI: 10.1371/journal.pone.0046754

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background Bacteria produce small molecule iron chelators, known as siderophores, to facilitate the acquisition of iron from the environment. The synthesis of more than one siderophore and the production of multiple siderophore uptake systems by a single bacterial species are common place. The selective advantages conferred by the multiplicity of siderophore synthesis remains poorly understood. However, there is growing evidence suggesting that siderophores may have other physiological roles besides their involvement in iron acquisition. Methods and Principal Findings Here we provide the first report that pyochelin displays antibiotic activity against some bacterial strains. Observation of differential sensitivity to pyochelin against a panel of bacteria provided the first indications that catecholate siderophores, produced by some bacteria, may have roles other than iron acquisition. A pattern emerged where only those strains able to make catecholate-type siderophores were resistant to pyochelin. We were able to associate pyochelin resistance to catecholate production by showing that pyochelin-resistant Escherichia coli became sensitive when biosynthesis of its catecholate siderophore enterobactin was impaired. As expected, supplementation with enterobactin conferred pyochelin resistance to the entE mutant. We observed that pyochelin-induced growth inhibition was independent of iron availability and was prevented by addition of the reducing agent ascorbic acid or by anaerobic incubation. Addition of pyochelin to E. coli increased the levels of reactive oxygen species (ROS) while addition of ascorbic acid or enterobactin reduced them. In contrast, addition of the carboxylate-type siderophore, citrate, did not prevent pyochelin-induced ROS increases and their associated toxicity. Conclusions We have shown that the catecholate siderophore enterobactin protects E. coli against the toxic effects of pyochelin by reducing ROS. Thus, it appears that catecholate siderophores can behave as protectors of oxidative stress. These results support the idea that siderophores can have physiological roles aside from those in iron acquisition.

References

[1]  Andrews SC, Robinson AK, Rodriguez-Quinones F (2003) Bacterial iron homeostasis. FEMS Microbiol Rev 27: 215–237.
[2]  Wooldridge KG, Williams PH (1993) Iron uptake mechanisms of pathogenic bacteria. FEMS Microbiol Rev 12: 325–348.
[3]  Hider RC, Kong X (2010) Chemistry and biology of siderophores. Nat Prod Rep 27: 637–657.
[4]  Miethke M, Marahiel MA (2007) Siderophore-based iron acquisition and pathogen control. Microbiol Mol Biol Rev 71: 413–451.
[5]  D’Onofrio A, Crawford JM, Stewart EJ, Witt K, Gavrish E, et al. (2010) Siderophores from neighboring organisms promote the growth of uncultured bacteria. Chem Biol 17: 254–264.
[6]  Raymond KN, Dertz EA, Kim SS (2003) Enterobactin: an archetype for microbial iron transport. Proc Natl Acad Sci U S A 100: 3584–3588.
[7]  Sorsa LJ, Dufke S, Heesemann J, Schubert S (2003) Characterization of an iroBCDEN gene cluster on a transmissible plasmid of uropathogenic Escherichia coli: evidence for horizontal transfer of a chromosomal virulence factor. Infect Immun 71: 3285–3293.
[8]  Faraldo-Gomez JD, Sansom MS (2003) Acquisition of siderophores in gram-negative bacteria. Nat Rev Mol Cell Biol 4: 105–116.
[9]  Chenault SS, Earhart CF (1991) Organization of genes encoding membrane proteins of the Escherichia coli ferrienterobactin permease. Mol Microbiol 5: 1405–1413.
[10]  Clarke TE, Tari LW, Vogel HJ (2001) Structural biology of bacterial iron uptake systems. Curr Top Med Chem 1: 7–30.
[11]  Kammler M, Schon C, Hantke K (1993) Characterization of the ferrous iron uptake system of Escherichia coli. J Bacteriol 175: 6212–6219.
[12]  Negre VL, Bonacorsi S, Schubert S, Bidet P, Nassif X, et al. (2004) The siderophore receptor IroN, but not the high-pathogenicity island or the hemin receptor ChuA, contributes to the bacteremic step of Escherichia coli neonatal meningitis. Infect Immun 72: 1216–1220.
[13]  Neilands JB (1992) Mechanism and regulation of synthesis of aerobactin in Escherichia coli K12 (pColV-K30). Can J Microbiol 38: 728–733.
[14]  Ozenberger BA, Nahlik MS, McIntosh MA (1987) Genetic organization of multiple fep genes encoding ferric enterobactin transport functions in Escherichia coli. J Bacteriol 169: 3638–3646.
[15]  Torres AG, Payne SM (1997) Haem iron-transport system in enterohaemorrhagic Escherichia coli O157: H7. Mol Microbiol 23: 825–833.
[16]  Cox CD, Rinehart KL Jr, Moore ML, Cook JC Jr (1981) Pyochelin: novel structure of an iron-chelating growth promoter for Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 78: 4256–4260.
[17]  Cornelis P (2010) Iron uptake and metabolism in pseudomonads. Appl Microbiol Biotechnol 86: 1637–1645.
[18]  Britigan BE, Rasmussen GT, Cox CD (1994) Pseudomonas siderophore pyochelin enhances neutrophil-mediated endothelial cell injury. Am J Physiol 266: L192–198.
[19]  Sasaki TI, Igarashi Y, Saito N, Furumai T (2002) Watasemycins A and B, New Antibiotics Produced by Streptomyces sp. TP-A0597. J Antibiot (Tokyo) 55: 249–255.
[20]  Sontag B, Gerlitz M, Paululat T, Rasser HF, Grun-Wollny I, et al. (2006) Oxachelin, a novel iron chelator and antifungal agent from Streptomyces sp. GW9/1258. J Antibiot (Tokyo) 59: 659–663.
[21]  Wang WL, Chi ZM, Chi Z, Li J, Wang XH (2009) Siderophore production by the marine-derived Aureobasidium pullulans and its antimicrobial activity. Bioresour Technol 100: 2639–2641.
[22]  Braun V, Pramanik A, Gwinner T, Koberle M, Bohn E (2009) Sideromycins: tools and antibiotics. Biometals 22: 3–13.
[23]  Konetschny-Rapp S, Jung G, Meiwes J, Zahner H (1990) Staphyloferrin A: a structurally new siderophore from staphylococci. Eur J Biochem 191: 65–74.
[24]  Pandey A, Sonti RV (2010) Role of the FeoB protein and siderophore in promoting virulence of Xanthomonas oryzae pv. oryzae on rice. J Bacteriol 192: 3187–3203.
[25]  Etchegaray A, Silva-Stenico ME, Moon DH, Tsai SM (2004) In silico analysis of nonribosomal peptide synthetases of Xanthomonas axonopodis pv. citri: identification of putative siderophore and lipopeptide biosynthetic genes. Microbiol Res 159: 425–437.
[26]  Britigan BE, Roeder TL, Rasmussen GT, Shasby DM, McCormick ML, et al. (1992) Interaction of the Pseudomonas aeruginosa secretory products pyocyanin and pyochelin generates hydroxyl radical and causes synergistic damage to endothelial cells. Implications for Pseudomonas-associated tissue injury. J Clin Invest 90: 2187–2196.
[27]  Vinckx T, Wei Q, Matthijs S, Noben JP, Daniels R, et al. (2011) A proteome analysis of the response of a Pseudomonas aeruginosa oxyR mutant to iron limitation. Biometals 24: 523–532.
[28]  Davidson JF, Whyte B, Bissinger PH, Schiestl RH (1996) Oxidative stress is involved in heat-induced cell death in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 93: 5116–5121.
[29]  Povie G, Villa G, Ford L, Pozzi D, Schiesser CH, et al. Role of catechol in the radical reduction of B-alkylcatecholboranes in presence of methanol. Chem Commun (Camb) 46: 803–805.
[30]  Hussein S, Hantke K, Braun V (1981) Citrate-dependent iron transport system in Escherichia coli K-12. Eur J Biochem 117: 431–437.
[31]  Braud A, Hannauer M, Mislin GL, Schalk IJ (2009) The Pseudomonas aeruginosa pyochelin-iron uptake pathway and its metal specificity. J Bacteriol 191: 3517–3525.
[32]  Perron NR, Brumaghim JL (2009) A review of the antioxidant mechanisms of polyphenol compounds related to iron binding. Cell Biochem Biophys 53: 75–100.
[33]  Buysens S, Heungens K, Poppe J, Hofte M (1996) Involvement of Pyochelin and Pyoverdin in Suppression of Pythium-Induced Damping-Off of Tomato by Pseudomonas aeruginosa 7NSK2. Appl Environ Microbiol 62: 865–871.
[34]  Sebbane F, Jarrett C, Gardner D, Long D, Hinnebusch BJ (2010) Role of the Yersinia pestis yersiniabactin iron acquisition system in the incidence of flea-borne plague. PloS One 5: e14379.
[35]  Jones AM, Wildermuth MC (2011) The phytopathogen Pseudomonas syringae pv. tomato DC3000 has three high-affinity iron-scavenging systems functional under iron limitation conditions but dispensable for pathogenesis. J Bacteriol 193: 2767–2775.
[36]  Watts RE, Totsika M, Challinor VL, Mabbett AN, Ulett GC, et al. (2012) Contribution of siderophore systems to growth and urinary tract colonization of asymptomatic bacteriuria Escherichia coli. Infect Immun 80: 333–344.
[37]  Chin AWTF, van den Broek D, de Voer G, van der Drift KM, Tuinman S, et al. (2001) Phenazine-1-carboxamide production in the biocontrol strain Pseudomonas chlororaphis PCL1391 is regulated by multiple factors secreted into the growth medium. Mol Plant Microbe Interact 14: 969–979.
[38]  Cox CD (1986) Role of pyocyanin in the acquisition of iron from transferrin. Infect Immun 52: 263–270.
[39]  Dietrich LE, Teal TK, Price-Whelan A, Newman DK (2008) Redox-active antibiotics control gene expression and community behavior in divergent bacteria. Science 321: 1203–1206.
[40]  Tindale AE, Mehrotra M, Ottem D, Page WJ (2000) Dual regulation of catecholate siderophore biosynthesis in Azotobacter vinelandii by iron and oxidative stress. Microbiology 146 (Pt 7): 1617–1626.
[41]  Cornish AS, WJ P (1998) The catecholate siderophores of Azotobacter vinelandii: their affinity for iron and role in oxygen stress management. Microbiology 144: 1747–1754.
[42]  Lee JY, Passalacqua KD, Hanna PC, Sherman DH (2011) Regulation of petrobactin and bacillibactin biosynthesis in Bacillus anthracis under iron and oxygen variation. PloS One 6: e20777.
[43]  Winkelmann G, Cansier A, Beck W, Jung G (1994) HPLC separation of enterobactin and linear 2,3-dihydroxybenzoylserine derivatives: a study on mutants of Escherichia coli defective in regulation (fur), esterase (fes) and transport (fepA). Biometals 7: 149–154.
[44]  Matzanke BF, Ecker DJ, Yang TS, Huynh BH, Muller G, et al. (1986) Escherichia coli iron enterobactin uptake monitored by Mossbauer spectroscopy. J Bacteriol 167: 674–680.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133