全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

A Facile and Specific Assay for Quantifying MicroRNA by an Optimized RT-qPCR Approach

DOI: 10.1371/journal.pone.0046890

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background The spatiotemporal expression patterns of microRNAs (miRNAs) are important to the verification of their predicted function. RT-qPCR is the accepted technique for the quantification of miRNA expression; however, stem-loop RT-PCR and poly(T)-adapter assay, the two most frequently used methods, are not very convenient in practice and have poor specificity, respectively. Results We have developed an optimal approach that integrates these two methods and allows specific and rapid detection of tiny amounts of sample RNA and reduces costs relative to other techniques. miRNAs of the same sample are polyuridylated and reverse transcribed into cDNAs using a universal poly(A)-stem-loop RT primer and then used as templates for SYBR? Green real-time PCR. The technique has a dynamic range of eight orders of magnitude with a sensitivity of up to 0.2 fM miRNA or as little as 10 pg of total RNA. Virtually no cross-reaction is observed among the closely-related miRNA family members and with miRNAs that have only a single nucleotide difference in this highly specific assay. The spatial constraint of the stem-loop structure of the modified RT primer allowed detection of miRNAs directly from cell lysates without laborious total RNA isolation, and the poly(U) tail made it possible to use multiplex RT reactions of mRNA and miRNAs in the same run. Conclusions The cost-effective RT-qPCR of miRNAs with poly(A)-stem-loop RT primer is simple to perform and highly specific, which is especially important for samples that are precious and/or difficult to obtain.

References

[1]  Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116: 281–297.
[2]  Ambros V (2004) The functions of animal microRNAs. Nature 431: 350–355.
[3]  Guo H, Ingolia NT, Weissman JS, Bartel DP (2010) Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466: 835–840.
[4]  Taby R, Issa JP (2010) Cancer epigenetics. CA Cancer J Clin 60: 376–392.
[5]  Jeyapalan Z, Deng Z, Shatseva T, Fang L, He C, et al. (2010) Expression of CD44 3′-untranslated region regulates endogenous microRNA functions in tumorigenesis and angiogenesis. Nucleic Acids Res 39: 3026–3041.
[6]  Wang JX, Jiao JQ, Li Q, Long B, Wang K, et al. (2011) miR-499 regulates mitochondrial dynamics by targeting calcineurin and dynamin-related protein-1. Nat Med 17: 71–78.
[7]  Pichiorri F, Suh SS, Rocci A, De Luca L, Taccioli C, et al. (2010) Downregulation of p53-inducible microRNAs 192, 194, and 215 impairs the p53/MDM2 autoregulatory loop in multiple myeloma development. Cancer Cell 18: 367–381.
[8]  Wu DW, Cheng YW, Wang J, Chen CY, Lee H (2010) Paxillin predicts survival and relapse in non-small cell lung cancer by microRNA-218 targeting. Cancer Res 70: 10392–10401.
[9]  Yang F, Xian RR, Li Y, Polony TS, Beemon KL (2007) Telomerase reverse transcriptase expression elevated by avian leukosis virus integration in B cell lymphomas. Proc Natl Acad Sci U S A 104: 18952–18957.
[10]  McCarthy N (2010) Cancer: Small losses, big gains with microRNAs. Nat Rev Genet 11: 8.
[11]  Kim J, Krichevsky A, Grad Y, Hayes GD, Kosik KS, et al. (2004) Identification of many microRNAs that copurify with polyribosomes in mammalian neurons. Proc Natl Acad Sci U S A 101: 360–365.
[12]  Lim LP, Glasner ME, Yekta S, Burge CB, Bartel DP (2003) Vertebrate microRNA genes. Science 299: 1540.
[13]  Liang RQ, Li W, Li Y, Tan CY, Li JX, et al. (2005) An oligonucleotide microarray for microRNA expression analysis based on labeling RNA with quantum dot and nanogold probe. Nucleic Acids Res 33: e17.
[14]  Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, et al. (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33: e179.
[15]  Sharbati-Tehrani S, Kutz-Lohroff B, Bergbauer R, Scholven J, Einspanier R (2008) miR-Q: a novel quantitative RT-PCR approach for the expression profiling of small RNA molecules such as miRNAs in a complex sample. BMC Mol Biol 9: 34.
[16]  Shi R, Chiang VL (2005) Facile means for quantifying microRNA expression by real-time PCR. Biotechniques 39: 519–525.
[17]  Balcells I, Cirera S, Busk PK (2011) Specific and sensitive quantitative RT-PCR of miRNAs with DNA primers. BMC Biotechnol 11: 70.
[18]  Veedu RN, Vester B, Wengel J (2007) Enzymatic incorporation of LNA nucleotides into DNA strands. Chembiochem 8: 490–492.
[19]  Tiscornia G, Izpisua Belmonte JC (2010) MicroRNAs in embryonic stem cell function and fate. Genes Dev 24: 2732–2741.
[20]  Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, et al. (2005) MicroRNA expression profiles classify human cancers. Nature 435: 834–838.
[21]  Bishop JA, Benjamin H, Cholakh H, Chajut A, Clark DP, et al. (2010) Accurate classification of non-small cell lung carcinoma using a novel microRNA-based approach. Clin Cancer Res 16: 610–619.
[22]  Huang PC, Chen CY, Yang FY, Au LC (2009) A multisampling reporter system for monitoring microRNA activity in the same population of cells. J Biomed Biotechnol 2009: 104716.
[23]  Giulietti A, Overbergh L, Valckx D, Decallonne B, Bouillon R, et al. (2001) An overview of real-time quantitative PCR: applications to quantify cytokine gene expression. Methods 25: 386–401.
[24]  Nielsen KE, Singh SK, Wengel J, Jacobsen JP (2000) Solution structure of an LNA hybridized to DNA: NMR study of the d(CT(L)GCT(L)T(L)CT(L)GC):d() duplex containing four locked nucleotides. Bioconjug Chem 11: 228–238.
[25]  Yehudai-Resheff S, Schuster G (2000) Characterization of the E.coli poly(A) polymerase: nucleotide specificity, RNA-binding affinities and RNA structure dependence. Nucleic Acids Res 28: 1139–1144.
[26]  Wan G, En Lim Q, Too HP (2010) High-performance quantification of mature microRNAs by real-time RT-PCR using deoxyuridine-incorporated oligonucleotides and hemi-nested primers. Rna 16: 1436–1445.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133