Background One major impediment to improving the management of breast cancer is the current lack of tumor marker with sufficient sensitivity and specificity. A growing body of evidence implicates the diagnostic potential of circulating miRNAs in cancer detection. MiR-155 plays an important role in the pathogenesis of breast cancer. However, the level of circulating miR-155 and its clinical relevance are not well established. The objective of the current study was to learn more about serum miR-155 in patients with breast cancer. Methodology/Principal Findings Using quantitative reverse transcription polymerase chain reaction (RT-qPCR), we demonstrated that serum miR-155 had significant increased levels in breast cancer patients (n = 103) compared with healthy subjects (n = 55) (p<0.001), which had a mean fold change of 2.94. Receiver operating characteristic (ROC) analysis revealed that miR-155 had considerable diagnostic accuracy, yielding an ROC-AUC (the areas under the ROC curve) of 0.801 (sensitivity 65.0%, specificity 81.8%). In addition, sera from a subset of breast cancer patients (n = 29) were collected after surgery and after four cycles of chemotherapy to evaluate the effects of clinical treatment on serum levels of candidate miRNAs. Surprisingly, a decreased level of serum miR-155 was found; whereas the concentrations of carbohydrate antigen 15-3 (CA15-3), carcinoembryonic antigen (CEA) and tissue polypeptide specific antigen (TPS) did not show this trend. Our results revealed that 79% patients showed response or stable disease after therapy had declined levels of serum miR-155. Conclusions/Significance Our results suggest that serum miR-155 is a potential biomarker to discriminate breast cancer patients from healthy subjects. For the first time, we demonstrated a declined trend of miR-155 after surgery and chemotherapy, which raises the possibility to use it as an indicator for treatment response.
References
[1]
Anonymous (1996) Clinical practice guidelines for the use of tumor markers in breast and colorectal cancer. Adopted on May 17, 1996 by the American Society of Clinical Oncology. J Clin Oncol 14: 2843–2877.
[2]
Guadagni F, Ferroni P, Carlini S, Mariotti S, Spila A, et al. (2001) A re-evaluation of carcinoembryonic antigen (CEA) as a serum marker for breast cancer: a prospective longitudinal study. Clin Cancer Res 7: 2357–2362.
[3]
Duffy MJ, Evoy D, McDermott EW (2010) CA 15–3: uses and limitation as a biomarker for breast cancer. Clin Chim Acta 411: 1869–1874.
[4]
Harris L, Fritsche H, Menel R, Norton L, Ravdin P, et al. (2007) American Society of Clinical Oncology 2007 Update of recommendations for the use of tumor markers in breast cancer. J Clin Oncol 25: 5287–5312.
[5]
Sturgeon CM, Duffy MJ, Stenman UK, Lilja H, Brünner N, et al. (2008) National Academy of Clinical Biochemistry Laboratory Medicine practice guidelines for use of tumor markers in testicular, prostate, colorectal, breast and ovarian cancers. Clin Chem 54: e11–79.
[6]
D’Alessandro R, Roselli M, Ferroni P, Mariotti S, Spila A, et al. (2001) Serum tissue polypeptide specific antigen (TPS): a complementary tumor marker to CA 15–3 in the management of breast cancer. Breast Cancer Res Treat 68: 9–19.
[7]
Cortez MA, Bueso-Ramos C, Ferdin J, Lopez-Berestein G, Sood AK, et al. (2011) MicroRNAs in body fluids–the mix of hormones and biomarkers. Nat Rev Clin Oncol 8: 467–477.
[8]
Schwarzenbach H, Hoon DS, Pantel K (2011) Cell-free nucleic acids as biomarkers in cancer patients. Nat Rev Cancer 11: 426–437.
[9]
Kosaka N, Iguchi H, Ochiya T (2010) Circulating microRNA in body fluid: a new potential biomarker for cancer diagnosis and prognosis. Cancer Sci 101: 2087–2092.
[10]
Brase JC, Wuttig D, Kuner R, Sültmann H (2010) Serum microRNAs as non-invasive biomarkers for cancer. Mol Cancer 9: 306.
[11]
Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, et al. (2008) Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A 105: 10513–10518.
[12]
Morimura R, Komatsu S, Ichikawa D, Takeshita H, Tsujiura M, et al. (2011) Novel diagnostic value of circulating miR-18a in plasma of patients with pancreatic cancer. Br J Cancer 105: 1733–1740.
[13]
Tomimaru Y, Equchi H, Nagano H, Wada H, Kobayashi S, et al. (2012) Circulating microRNA-21 as a novel biomarker for hepatocellular carcinoma. J hepatol 56: 167–175.
[14]
Shen J, Todd NW, Zhang H, Yu L, Lingxiao X, et al. (2011) Plasma microRNAs as potential biomarkers for non-small-cell lung cancer. Lab Invest 91: 579–587.
[15]
Wang F, Zheng Z, Guo J, Ding X (2010) Correlation and quantification of microRNA aberrant expression in tissues and sera from patients with breast tumor. Gynecol Oncol 119: 586–593.
[16]
Chen X, Ba Y, Ma L, Cai X, Yin Y, et al. (2008) Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 18: 997–1006.
[17]
McDonald JS, Milosevic D, Reddi HV, Grebe SK, Algeciras-Schimnich A (2011) Analysis of circulating microRNA: preanalytical and analytical challenges. Clin Chem 57: 833–840.
[18]
Jiang S, Zhang HW, Lu MH, He XH, Li Y (2010) MicroRNA-155 functions as an OncomiR in breast cancer by targeting the suppressor of cytokine signaling 1 gene. Cancer Res 70: 3119–3127.
[19]
Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R (2005) MicroRNA gene expression deregulation in human breast cancer. Cancer Res 65: 7065–7070.
[20]
Zhu W, Qin W, Atasoy U, Sauter ER (2009) Circulating microRNAs in breast cancer and healthy subjects. BMC Res Notes 2: 89.
[21]
Roth C, Rack B, Müller V, Janni W, Pantel K (2010) Circulating microRNAs as blood-based markers for patients with primary and metastatic breast cancer. Breast Cancer Res 12: R90.
[22]
Heneghan HM, Miller N, Kerin MJ (2011) Circulating microRNAs: promising breast cancer Biomarkers. Breast Cancer Res 13: 402.
[23]
Heneghan HM, Miller N, Lowery AJ, Sweeney KJ, Newell J, et al. (2010) Circulating microRNAs as novel minimally invasive biomarkers for breast cancer. Ann Surg 25: 499–505.
[24]
Miller AB, Hoogstraten B, Staquet M, Winkler A (1981) Reporting results in cancer treatment. Cancer 47: 207–214.
[25]
Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25: 402–408.
[26]
Mattiske S, Suetani RJ, Neilsen PM, Callen DF (2012) The Oncogenic Role of miR-155 in Breast cancer. Cancer Epidermiol Biomarkers Prev [Epub ahead of print].
[27]
Wang J, Hua HJ (2012) Role of miR-155 in breast cancer. Front Biosci 17: 2350–2355.
[28]
Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, et al. (2006) A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A 103: 2257–2261.
[29]
Pritchard CC, Kroh E, Wood B, Arroyo JD, Dougherty KJ, et al. (2012) Blood cell origin of circulating microRNAs: a cautionary note for cancer biomarker studies. Cancer Prev Res (Phila) 5: 492–497.
[30]
Wong TS, Liu XB, Wong BY, Ng RW, Yuen AP, et al. (2008) Mature miR-184 as Potential Oncogenic microRNA of Squamous Cell Carcinoma of Tongue. Clin Cancer Res 14: 2588–2592.
[31]
Ng EK, Chong WW, Jin H, Lam EK, Shin VY, et al. (2009) Differential expression of microRNAs in plasma of patients with colorectal cancer: a potential marker for colorectal cancer screening. Gut 58: 1375–1381.
[32]
Qi P, Cheng SQ, Wang H, Li N, Chen YF, et al. (2011) Serum microRNAs as biomarkers for hepatocellular carcinoma in Chinese patients with chronic hepatitis B virus infection. PLoS One 6: e28486.
[33]
Wu SC, Chou FF, Rau KM (2010) Clinical significance of a serum CA 15–3 surge and the usefulness of CA 15–3 kinetics in monitoring chemotherapy response in patients with metastatic breast cancer. Breast Cancer Res Treat 124: 879–882.
[34]
Demicheli R, Retsky MW, Hrushesky WJ, Baum M (2007) Tumor dormancy and surgery-driven interruption of dormancy in breast cancer: learning from failures. Nat Clin Pract Oncol 4: 699–710.
[35]
Fisher B, Gunduz N, Coyle J, Rudock C, Saffer E (1989) Presence of a growth-stimulating factor in serum following primary tumor removal in mice. 49: 1996–2001.
[36]
Van Dierendonck JH, Keijzer R, Cornelisse CJ, Van de Velde CJ (1991) Surgically induced cytokinetic responses in experimental rat mammary tumor models. Cancer 68: 759–767.
[37]
Abramovitch R, Marikovsky M, Meir G, Neeman M (1998) Stimulation of tumour angiogenesis by proximal wounds: spatial and temporal analysis by MRI. Br J Cancer 77: 440–447.
[38]
Gallo A, Tandon M, Alevizos I, Illei GG (2012) The majority of microRNAs detectable in serum and saliva is concentrated in exosomes. PLoS One 7: e30679.
[39]
Valadi H, Ekstr?m K, Bossios A, Sj?strand M, Lee JJ, et al. (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9: 654–659.
[40]
Kosaka N, Iguchi H, Yoshioka Y, Takeshita F, Matsuki Y, et al. (2010) Secretory mechanisms and intercellular transfer of microRNAs in living cells. J Biol Chem 285: 17442–17452.
[41]
Taylor DD, Gercel-Taylor C (2008) MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol 110: 13–21.
[42]
Ohshima K, Inoue K, Fujiwara A, Hatakeyama K, Kanto K, et al. (2010) Let-7 microRNA family is selectively secreted into the extracellular environment via exosomes in a metastatic gastric cancer cell line. PloS One 5: e13247–56.
[43]
Lou Y, Yang X, Wang F, Cui Z, Huang Y (2010) MicroRNA-21 promotes the cell proliferation, invasion and migration abilities in ovarian epithelial carcinomas through inhibiting the expression of PTEN protein. Int J Mol Med 26: 819–827.
[44]
Creemers EE, Tijsen AJ, Pinto YM (2012) Circulating MicroRNAs: Novel Biomarkers and Extracellular Communicatiors in Cardiovascular Disease? Circ Res 110: 483–495.
[45]
Hu Z, Dong J, Wang LE, Ma H, Liu J, et al. (2012) Serum microRNA profiling and breast cancer risk: the use of miR-484/191 as endogenous controls. Carcinogenesis. In press.
[46]
Zhao H, Shen J, Medico L, Wang D, Ambrosone CB, et al. (2010) A pilot study of circulating miRNAs as potential biomarkers of early stage breast cancer. PLoS One 5: e13735.
[47]
Heegaard NH, Schetter AJ, Welsh JA, Yoneda M, Bowman ED, et al. (2012) Circulating micro-RNA expression profiles in early stage nonsmall cell lung cancer. Int J Cancer 130: 1378–1386.