全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

Species-Level Analysis of DNA Sequence Data from the NIH Human Microbiome Project

DOI: 10.1371/journal.pone.0047075

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background Outbreaks of antibiotic-resistant bacterial infections emphasize the importance of surveillance of potentially pathogenic bacteria. Genomic sequencing of clinical microbiological specimens expands our capacity to study cultivable, fastidious and uncultivable members of the bacterial community. Herein, we compared the primary data collected by the NIH’s Human Microbiome Project (HMP) with published epidemiological surveillance data of Staphylococcus aureus. Methods The HMP’s initial dataset contained microbial survey data from five body regions (skin, nares, oral cavity, gut and vagina) of 242 healthy volunteers. A significant component of the HMP dataset was deep sequencing of the 16S ribosomal RNA gene, which contains variable regions enabling taxonomic classification. Since species-level identification is essential in clinical microbiology, we built a reference database and used phylogenetic placement followed by most recent common ancestor classification to look at the species distribution for Staphylococcus, Klebsiella and Enterococcus. Main Results We show that selecting the accurate region of the 16S rRNA gene to sequence is analogous to carefully selecting culture conditions to distinguish closely related bacterial species. Analysis of the HMP data showed that Staphylococcus aureus was present in the nares of 36% of healthy volunteers, consistent with culture-based epidemiological data. Klebsiella pneumoniae and Enterococcus faecalis were found less frequently, but across many habitats. Conclusions This work demonstrates that large 16S rRNA survey studies can be used to support epidemiological goals in the context of an increasing awareness that microbes flourish and compete within a larger bacterial community. This study demonstrates how genomic techniques and information could be critically important to trace microbial evolution and implement hospital infection control.

References

[1]  Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, et al.. (2011) Enterotypes of the human gut microbiome. Nature. Available:http://www.ncbi.nlm.nih.gov/pubmed/21508?958.
[2]  Aagaard K, et al (under review) A Comprehensive Strategy for Sampling the Human Microbiome.
[3]  Human Microbiome Project Consortium (2012) Structure, Function and Diversity of the healthy human microbiome. Nature. 2012 Jun 13 486(7402): 207–14 doi: 10.1038/nature11234.
[4]  Human Microbiome Project Consortium (2012) A framework for human microbiome research. Nature. 2012 Jun 13 486(7402): 215–21 doi: 10.1038/nature11209.
[5]  Holt RA, Jones SJM (2008) The new paradigm of flow cell sequencing. Genome Res 18: 839–846 doi:10.1101/gr.073262.107.
[6]  Cole JR, Chai B, Farris RJ, Wang Q, Kulam-Syed-Mohideen AS, et al. (2007) The ribosomal database project (RDP-II): introducing myRDP space and quality controlled public data. Nucleic Acids Research 35: D169–D172 doi:10.1093/nar/gkl889.
[7]  DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, et al. (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72: 5069–5072 doi:10.1128/AEM.03006-05.
[8]  Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, et al. (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Research 35: 7188–7196 doi:10.1093/nar/gkm864.
[9]  Clemente JC, Jansson J, Valiente G (2010) Accurate taxonomic assignment of short pyrosequencing reads. Pac Symp Biocomput: 3–9.
[10]  Neefs J-M, Van De Peer Y, Hendriks L, De Wachter R (1990) Compilation of small ribosomal subunit RNA sequences. Nucleic Acids Res 18: 2237–2317.
[11]  Matsen FA, Kodner RB, Armbrust EV (2010) pplacer: linear time maximum-likelihood and Bayesian phylogenetic placement of sequences onto a fixed reference tree. BMC Bioinformatics 11: 538 doi:10.1186/1471–2105–11–538.
[12]  Monstein H, Nikpour-Badr S, Jonasson J (2001) Rapid molecular identification and subtyping of Helicobacter pylori by pyrosequencing of the 16S rDNA variable V1 and V3 regions. FEMS Microbiology Letters 199: 103–107 doi:10.1111/j.1574–6968.2001.tb10658.x.
[13]  Jonasson J, Olofsson M, Monstein H-J (2002) Classification, identification and subtyping of bacteria based on pyrosequencing and signature matching of 16S rDNA fragments. APMIS 110: 263–272.
[14]  Soergel DAW, Dey N, Knight R, Brenner SE (2012) Selection of primers for optimal taxonomic classification of environmental 16S rRNA gene sequences. The ISME Journal. Available:http://f1000.com/717951507?emailType=sec?tionAlert. Accessed 15 August 2012.
[15]  Nossa CW, Oberdorf WE, Yang L, Aas JA, Paster BJ, et al. (2010) Design of 16S rRNA gene primers for 454 pyrosequencing of the human foregut microbiome. World J Gastroenterol 16: 4135–4144.
[16]  Zhou J, Wu L, Deng Y, Zhi X, Jiang Y-H, et al. (2011) Reproducibility and quantitation of amplicon sequencing-based detection. ISME J 5: 1303–1313 doi:10.1038/ismej.2011.11.
[17]  Wegner DL, Witte DL, Schrantz RD (1992) Insensitivity of rapid antigen detection methods and single blood agar plate culture for diagnosing streptococcal pharyngitis. JAMA 267: 695–697.
[18]  Wertheim HFL, Melles DC, Vos MC, van Leeuwen W, van Belkum A, et al. (2005) The role of nasal carriage in Staphylococcus aureus infections. Lancet Infect Dis 5: 751–762 doi:10.1016/S1473-3099(05)70295-4.
[19]  Kuehnert MJ, Kruszon-Moran D, Hill HA, McQuillan G, McAllister SK, et al. (2006) Prevalence of Staphylococcus aureus nasal colonization in the United States, 2001–2002. J Infect Dis 193: 172–179 doi:10.1086/499632.
[20]  Gorwitz RJ, Kruszon-Moran D, McAllister SK, McQuillan G, McDougal LK, et al. (2008) Changes in the prevalence of nasal colonization with Staphylococcus aureus in the United States, 2001–2004. J Infect Dis 197: 1226–1234 doi:10.1086/533494.
[21]  Kader AA, Kumar A, Kamath KA (2007) Fecal carriage of extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae in patients and asymptomatic healthy individuals. Infect Control Hosp Epidemiol 28: 1114–1116 doi:10.1086/519865.
[22]  Holl?nder R, Ebke M, Barck H, von Pritzbuer E (2001) Asymptomatic carriage of Klebsiella pneumoniae producing extended-spectrum beta-lactamase by patients in a neurological early rehabilitation unit: management of an outbreak. J Hosp Infect 48: 207–213 doi:10.1053/jhin.2001.0997.
[23]  Snitkin ES, Zelazny AM, Thomas PJ, Stock F, Henderson DK, et al. (2012) Tracking a Hospital Outbreak of Carbapenem-Resistant Klebsiella pneumoniae with Whole-Genome Sequencing. Sci Transl Med 4: 148ra116 doi:10.1126/scitranslmed.3004129.
[24]  Segata N, Waldron L, Ballarini A, Narasimhan V, Jousson O, et al. (2012) Metagenomic microbial community profiling using unique clade-specific marker genes. Nat Methods 9: 811–814 doi:10.1038/nmeth.2066.
[25]  Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, et al. (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75: 7537–7541 doi:10.1128/AEM.01541-09.
[26]  Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52: 696–704.
[27]  Matsen FA, Gallagher A (2011) Reconciling taxonomy and phylogenetic inference: formalism and algorithms for describing discord and inferring taxonomic roots. arXiv:11095423. Available:http://arxiv.org/abs/1109.5423.
[28]  Schloss PD, Gevers D, Westcott SL (2011) Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA-based studies. PLoS ONE 2011 6(12): e27310 doi:10.1371/journal.pone.0027310.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133