Background Although numerous sequence variants in desmoglein-2 (DSG2) have been associated with arrhythmogenic right ventricular cardiomyopathy (ARVC), the functional impact of new sequence variations is difficult to estimate. Methodology/Principal Findings To test the functional consequences of DSG2-variants, we established an expression system for the extracellular domain and the full-length DSG2 using the human cell line HT1080. We established new tools to investigate ARVC-associated DSG2 variations and compared wild-type proteins and proteins with one of the five selected variations (DSG2-p.R46Q, -p.D154E, -p.D187G, -p.K294E, -p.V392I) with respect to prodomain cleavage, adhesion properties and cellular localisation. Conclusions/Significance The ARVC-associated DSG2-p.R46Q variation was predicted to be probably damaging by bioinformatics tools and to concern a conserved proprotein convertase cleavage site. In this study an impaired prodomain cleavage and an influence on the DSG2-properties could be demonstrated for the R46Q-variant leading to the classification of the variant as a potential gain-of-function mutant. In contrast, the variants DSG2-p.K294E and -p.V392I, which have an arguable impact on ARVC pathogenesis and are predicted to be benign, did not show functional differences to the wild-type protein in our study. Notably, the variants DSG2-p.D154E and -p.D187G, which were predicted to be damaging by bioinformatics tools, had no detectable effects on the DSG2 protein properties in our study.
References
[1]
Thiene G, Corrado D, Basso C (2007) Arrhythmogenic right ventricular cardiomyopathy/dysplasia. Orphanet J Rare Dis 2: 45.
[2]
Corrado D, Basso C, Pavei A, Michieli P, Schiavon M, et al. (2006) Trends in sudden cardiovascular death in young competitive athletes after implementation of a preparticipation screening program. Jama 296: 1593–1601.
[3]
Rampazzo A, Nava A, Danieli GA, Buja G, Daliento L, et al. (1994) The gene for arrhythmogenic right ventricular cardiomyopathy maps to chromosome 14q23-q24. Hum Mol Genet 3: 959–962.
[4]
Tavora F, Zhang M, Franco M, Oliveira JB, Li L, et al.. (2011) Distribution of biventricular disease in arrhythmogenic cardiomyopathy: an autopsy study. Hum Pathol.
[5]
Gaertner A, Schwientek P, Ellinghaus P, Summer H, Golz S, et al. (2012) Myocardial transcriptome analysis of human arrhythmogenic right ventricular cardiomyopathy. Physiol Genomics 44: 99–109.
[6]
Herren T, Gerber PA, Duru F (2009) Arrhythmogenic right ventricular cardiomyopathy/dysplasia: a not so rare “disease of the desmosome” with multiple clinical presentations. Clin Res Cardiol 98: 141–158.
[7]
Basso C, Thiene G, Corrado D, Angelini A, Nava A, et al. (1996) Arrhythmogenic right ventricular cardiomyopathy. Dysplasia, dystrophy, or myocarditis? Circulation 94: 983–991.
[8]
Corrado D, Basso C, Thiene G, McKenna WJ, Davies MJ, et al. (1997) Spectrum of clinicopathologic manifestations of arrhythmogenic right ventricular cardiomyopathy/dysplasia: a multicenter study. J Am Coll Cardiol 30: 1512–1520.
[9]
Gerull B, Heuser A, Wichter T, Paul M, Basson CT, et al. (2004) Mutations in the desmosomal protein plakophilin-2 are common in arrhythmogenic right ventricular cardiomyopathy. Nat Genet 36: 1162–1164.
[10]
Sen-Chowdhry S, Syrris P, McKenna WJ (2005) Genetics of right ventricular cardiomyopathy. J Cardiovasc Electrophysiol 16: 927–935.
[11]
Sen-Chowdhry S, Syrris P, McKenna WJ (2007) Role of genetic analysis in the management of patients with arrhythmogenic right ventricular dysplasia/cardiomyopathy. J Am Coll Cardiol 50: 1813–1821.
[12]
Awad MM, Dalal D, Cho E, Amat-Alarcon N, James C, et al. (2006) DSG2 mutations contribute to arrhythmogenic right ventricular dysplasia/cardiomyopathy. Am J Hum Genet 79: 136–142.
[13]
Syrris P, Ward D, Evans A, Asimaki A, Gandjbakhch E, et al. (2006) Arrhythmogenic right ventricular dysplasia/cardiomyopathy associated with mutations in the desmosomal gene desmocollin-2. Am J Hum Genet 79: 978–984.
[14]
McKoy G, Protonotarios N, Crosby A, Tsatsopoulou A, Anastasakis A, et al. (2000) Identification of a deletion in plakoglobin in arrhythmogenic right ventricular cardiomyopathy with palmoplantar keratoderma and woolly hair (Naxos disease). Lancet 355: 2119–2124.
[15]
Alcalai R, Metzger S, Rosenheck S, Meiner V, Chajek-Shaul T (2003) A recessive mutation in desmoplakin causes arrhythmogenic right ventricular dysplasia, skin disorder, and woolly hair. J Am Coll Cardiol 42: 319–327.
[16]
Green KJ, Simpson CL (2007) Desmosomes: new perspectives on a classic. J Invest Dermatol 127: 2499–2515.
[17]
Borrmann CM, Grund C, Kuhn C, Hofmann I, Pieperhoff S, et al. (2006) The area composita of adhering junctions connecting heart muscle cells of vertebrates. II. Colocalizations of desmosomal and fascia adhaerens molecules in the intercalated disk. Eur J Cell Biol 85: 469–485.
[18]
Farquhar MG, Palade GE (1963) Junctional complexes in various epithelia. J Cell Biol 17: 375–412.
[19]
Rayns DG, Simpson FO, Ledingham JM (1969) Ultrastructure of desmosomes in mammalian intercalated disc; appearances after lanthanum treatment. J Cell Biol 42: 322–326.
[20]
Sjostrand FS, Andersson E (1954) Electron microscopy of the intercalated discs of cardiac muscle tissue. Experientia 10: 369–370.
[21]
Koch PJ, Walsh MJ, Schmelz M, Goldschmidt MD, Zimbelmann R, et al. (1990) Identification of desmoglein, a constitutive desmosomal glycoprotein, as a member of the cadherin family of cell adhesion molecules. Eur J Cell Biol 53: 1–12.
[22]
Chitaev NA, Troyanovsky SM (1997) Direct Ca2+-dependent heterophilic interaction between desmosomal cadherins, desmoglein and desmocollin, contributes to cell-cell adhesion. J Cell Biol 138: 193–201.
[23]
Troyanovsky RB, Klingelhofer J, Troyanovsky S (1999) Removal of calcium ions triggers a novel type of intercadherin interaction. J Cell Sci 112 (Pt 23): 4379–4387.
[24]
Syed SE, Trinnaman B, Martin S, Major S, Hutchinson J, et al. (2002) Molecular interactions between desmosomal cadherins. Biochem J 362: 317–327.
[25]
Schlegel N, Meir M, Heupel WM, Holthofer B, Leube RE, et al. (2010) Desmoglein 2-mediated adhesion is required for intestinal epithelial barrier integrity. Am J Physiol Gastrointest Liver Physiol 298: G774–783.
[26]
Ozawa M, Kemler R (1990) Correct proteolytic cleavage is required for the cell adhesive function of uvomorulin. J Cell Biol 111: 1645–1650.
[27]
Posthaus H, Dubois CM, Muller E (2003) Novel insights into cadherin processing by subtilisin-like convertases. FEBS Lett 536: 203–208.
[28]
Schafer S, Stumpp S, Franke WW (1996) Immunological identification and characterization of the desmosomal cadherin Dsg2 in coupled and uncoupled epithelial cells and in human tissues. Differentiation 60: 99–108.
[29]
Whittock NV, Bower C (2003) Genetic evidence for a novel human desmosomal cadherin, desmoglein 4. J Invest Dermatol 120: 523–530.
[30]
Schafer S, Koch PJ, Franke WW (1994) Identification of the ubiquitous human desmoglein, Dsg2, and the expression catalogue of the desmoglein subfamily of desmosomal cadherins. Exp Cell Res 211: 391–399.
[31]
Koch PJ, Goldschmidt MD, Zimbelmann R, Troyanovsky R, Franke WW (1992) Complexity and expression patterns of the desmosomal cadherins. Proc Natl Acad Sci U S A 89: 353–357.
[32]
Syrris P, Ward D, Asimaki A, Evans A, Sen-Chowdhry S, et al. (2007) Desmoglein-2 mutations in arrhythmogenic right ventricular cardiomyopathy: a genotype-phenotype characterization of familial disease. Eur Heart J 28: 581–588.
[33]
Xu T, Yang Z, Vatta M, Rampazzo A, Beffagna G, et al. (2010) Compound and digenic heterozygosity contributes to arrhythmogenic right ventricular cardiomyopathy. J Am Coll Cardiol 55: 587–597.
[34]
Pilichou K, Nava A, Basso C, Beffagna G, Bauce B, et al. (2006) Mutations in desmoglein-2 gene are associated with arrhythmogenic right ventricular cardiomyopathy. Circulation 113: 1171–1179.
[35]
Klauke B, Kossmann S, Gaertner A, Brand K, Stork I, et al. (2010) De novo desmin-mutation N116S is associated with arrhythmogenic right ventricular cardiomyopathy. Hum Mol Genet 19: 4595–4607.
[36]
Rasheed S, Nelson-Rees WA, Toth EM, Arnstein P, Gardner MB (1974) Characterization of a newly derived human sarcoma cell line (HT-1080). Cancer 33: 1027–1033.
[37]
Franke WW, Borrmann CM, Grund C, Pieperhoff S (2006) The area composita of adhering junctions connecting heart muscle cells of vertebrates. I. Molecular definition in intercalated disks of cardiomyocytes by immunoelectron microscopy of desmosomal proteins. Eur J Cell Biol 85: 69–82.
[38]
Koeser J, Troyanovsky SM, Grund C, Franke WW (2003) De novo formation of desmosomes in cultured cells upon transfection of genes encoding specific desmosomal components. Exp Cell Res 285: 114–130.
[39]
Heuser A, Plovie ER, Ellinor PT, Grossmann KS, Shin JT, et al. (2006) Mutant desmocollin-2 causes arrhythmogenic right ventricular cardiomyopathy. Am J Hum Genet 79: 1081–1088.
[40]
Marcus FI, McKenna WJ, Sherrill D, Basso C, Bauce B, et al. (2010) Diagnosis of arrhythmogenic right ventricular cardiomyopathy/dysplasia: proposed modification of the task force criteria. Circulation 121: 1533–1541.
[41]
Pilichou K, Remme CA, Basso C, Campian ME, Rizzo S, et al. (2009) Myocyte necrosis underlies progressive myocardial dystrophy in mouse dsg2-related arrhythmogenic right ventricular cardiomyopathy. J Exp Med 206: 1787–1802.
[42]
Gehmlich K, Asimaki A, Cahill TJ, Ehler E, Syrris P, et al. (2010) Novel missense mutations in exon 15 of desmoglein-2: role of the intracellular cadherin segment in arrhythmogenic right ventricular cardiomyopathy? Heart Rhythm 7: 1446–1453.
[43]
Gehmlich K, Lambiase PD, Asimaki A, Ciaccio EJ, Ehler E, et al. (2011) A novel desmocollin-2 mutation reveals insights into the molecular link between desmosomes and gap junctions. Heart Rhythm 8: 711–718.
[44]
Gehmlich K, Syrris P, Peskett E, Evans A, Ehler E, et al. (2011) Mechanistic insights into arrhythmogenic right ventricular cardiomyopathy caused by desmocollin-2 mutations. Cardiovasc Res 90: 77–87.
[45]
Gehmlich K, Syrris P, Reimann M, Asimaki A, Ehler E, et al.. (2011) Molecular changes in the heart of a severe case of arrhythmogenic right ventricular cardiomyopathy caused by a desmoglein-2 null allele. Cardiovasc Pathol.
[46]
Heupel WM, Muller T, Efthymiadis A, Schmidt E, Drenckhahn D, et al. (2009) Peptides Targeting the Desmoglein 3 Adhesive Interface Prevent Autoantibody-induced Acantholysis in Pemphigus. J Biol Chem 284: 8589–8595.
[47]
Waschke J, Menendez-Castro C, Bruggeman P, Koob R, Amagai M, et al. (2007) Imaging and force spectroscopy on desmoglein 1 using atomic force microscopy reveal multivalent Ca(2+)-dependent, low-affinity trans-interaction. J Membr Biol 216: 83–92.
[48]
Sano R, Hayashi F, Yoshida M, Yokoyama S (2009) Solution structure of the first cadherin domain from human Desmoglein-2.. to be published: DOI:10.2210/pdb2yqg/pdb
[49]
Pokutta S, Herrenknecht K, Kemler R, Engel J (1994) Conformational changes of the recombinant extracellular domain of E-cadherin upon calcium binding. Eur J Biochem 223: 1019–1026.
[50]
Haussinger D, Ahrens T, Sass HJ, Pertz O, Engel J, et al. (2002) Calcium-dependent homoassociation of E-cadherin by NMR spectroscopy: changes in mobility, conformation and mapping of contact regions. J Mol Biol 324: 823–839.
[51]
Munzer JS, Basak A, Zhong M, Mamarbachi A, Hamelin J, et al. (1997) In vitro characterization of the novel proprotein convertase PC7. J Biol Chem 272: 19672–19681.
[52]
Vollenweider F, Benjannet S, Decroly E, Savaria D, Lazure C, et al. (1996) Comparative cellular processing of the human immunodeficiency virus (HIV-1) envelope glycoprotein gp160 by the mammalian subtilisin/kexin-like convertases. Biochem J 314 (Pt 2): 521–532.
[53]
Seidah NG, Benjannet S, Pareek S, Chretien M, Murphy RA (1996) Cellular processing of the neurotrophin precursors of NT3 and BDNF by the mammalian proprotein convertases. FEBS Lett 379: 247–250.
[54]
Rawlings ND, Barrett AJ, Bateman A (2010) MEROPS: the peptidase database. Nucleic Acids Res 38: D227–233.
[55]
Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8: 785–786.
[56]
UniProt C (2011) Ongoing and future developments at the Universal Protein Resource. Nucleic Acids Res 39: D214–219.
[57]
Koch AW, Farooq A, Shan W, Zeng L, Colman DR, et al. (2004) Structure of the neural (N-) cadherin prodomain reveals a cadherin extracellular domain-like fold without adhesive characteristics. Structure 12: 793–805.
[58]
Chou KC, Elrod DW (1999) Prediction of membrane protein types and subcellular locations. Proteins 34: 137–153.
[59]
Kopito RR (1997) ER quality control: the cytoplasmic connection. Cell 88: 427–430.
[60]
Kowalski JM, Parekh RN, Mao J, Wittrup KD (1998) Protein folding stability can determine the efficiency of escape from endoplasmic reticulum quality control. J Biol Chem 273: 19453–19458.
[61]
Windoffer R, Borchert-Stuhltrager M, Leube RE (2002) Desmosomes: interconnected calcium-dependent structures of remarkable stability with significant integral membrane protein turnover. J Cell Sci 115: 1717–1732.
[62]
Gloushankova NA, Wakatsuki T, Troyanovsky RB, Elson E, Troyanovsky SM (2003) Continual assembly of desmosomes within stable intercellular contacts of epithelial A-431 cells. Cell Tissue Res 314: 399–410.
[63]
De Bortoli M, Beffagna G, Bauce B, Lorenzon A, Smaniotto G, et al. (2010) The p.A897KfsX4 frameshift variation in desmocollin-2 is not a causative mutation in arrhythmogenic right ventricular cardiomyopathy. Eur J Hum Genet 18: 776–782.
[64]
van der Zwaag PA, Jongbloed JD, van den Berg MP, van der Smagt JJ, Jongbloed R, et al. (2009) A genetic variants database for arrhythmogenic right ventricular dysplasia/cardiomyopathy. Hum Mutat 30: 1278–1283.
[65]
Keim SA, Johnson KR, Wheelock MJ, Wahl JK 3rd (2008) Generation and characterization of monoclonal antibodies against the proregion of human desmoglein-2. Hybridoma (Larchmt) 27: 249–258.
[66]
Holden P, Horton WA (2009) Crude subcellular fractionation of cultured mammalian cell lines. BMC Res Notes 2: 243.
[67]
Whitmore L, Wallace BA (2008) Protein secondary structure analyses from circular dichroism spectroscopy: methods and reference databases. Biopolymers 89: 392–400.
[68]
Provencher SW, Glockner J (1981) Estimation of globular protein secondary structure from circular dichroism. Biochemistry 20: 33–37.
[69]
van Stokkum IH, Spoelder HJ, Bloemendal M, van Grondelle R, Groen FC (1990) Estimation of protein secondary structure and error analysis from circular dichroism spectra. Anal Biochem 191: 110–118.
[70]
Evans P, Bateman OA, Slingsby C, Wallace BA (2007) A reference dataset for circular dichroism spectroscopy tailored for the betagamma-crystallin lens proteins. Exp Eye Res 84: 1001–1008.
[71]
Albaum SP, Neuweger H, Franzel B, Lange S, Mertens D, et al. (2009) Qupe–a Rich Internet Application to take a step forward in the analysis of mass spectrometry-based quantitative proteomics experiments. Bioinformatics 25: 3128–3134.