Background Adenosine triphosphate (ATP) plays an important role in the cochlea. However, the source of ATP and the mechanism by which it is released remain unclear. This study investigates the presence and release mechanism of ATP in vitro cultured marginal cells isolated from the stria vascularis of the cochlea in neonatal rats. Methods Sprague-Dawley rats aged 1–3 days old were used for isolation, in vitro culture, and purification of marginal cells. Cultured marginal cells were verified by flow cytometry. Vesicles containing ATP in these cells were identified by fluorescence staining. The bioluminescence assay was used for determination of ATP concentration in the extracellular fluid released by marginal cells. Assays for ATP concentration were performed when the ATP metabolism of cells was influenced, and ionic concentrations in intracellular and extracellular fluid were found to change. Results Evaluation of cultured marginal cells with flow cytometry revealed the percentage of fluorescently-labeled cells as 92.9% and 81.9%, for cytokeratin and vimentin, respectively. Quinacrine staining under fluorescence microscopy revealed numerous green, star-like spots in the cytoplasm of these cells. The release of ATP from marginal cells was influenced by changes in the concentration of intracellular and extracellular ions, namely extracellular K+ and intra- and extracellular Ca2+. Furthermore, changes in the concentration of intracellular Ca2+ induced by the inhibition of the phospholipase signaling pathway also influence the release of ATP from marginal cells. Conclusion We confirmed the presence and release of ATP from marginal cells of the stria vascularis. This is the first study to demonstrate that the release of ATP from such cells is associated with the state of the calcium pump, K+ channel, and activity of enzymes related to the phosphoinositide signaling pathway, such as adenylate cyclase, phospholipase C, and phospholipase A2.
References
[1]
Thorne PR, Mu?oz DJ, Nikolic P, Mander L, Jagger DJ, et al. (2002) Potential role of purinergic signalling in cochlearpathologycochlear pathology. Audiol Neurootol 7: 180–184.
[2]
Vlajkovic SM, Housley GD, Mu?oz DJ, Robson SC, Sévigny J, et al. (2004) Noise exposure induces up-regulation of ecto-nucleoside triphosphate diphosphohydrolases 1 and 2 in rat cochlear. Neuroscience 126: 763–773.
[3]
Piazza V, Ciubotaru CD, Gale JE, Mammano F (2007) Purinergic signalling and intercellular Ca2+ wave propagation in the organ of Corti. Cell Calcium 41: 77–86.
[4]
Di Virgilio F, Chiozzi P, Ferrari D, Falzoni S, Sanz JM, et al. (2001) Nucleotide receptors: an emerging family of regulatory molecules in blood cells. Blood 97: 587–600.
[5]
Housley GD, Jagger DJ, Greenwood D, Raybould NP, Salih SG, et al. (2002) Purinergic regulation of sound transduction and auditory neurotransmission. Audiol Neurootol 7: 55–61.
Housley GD, Thorne PR (2000) Purinergic signaling: An experimental perspective. J Autonom Nerv Sys 81: 139–145.
[8]
Zhao HB, Yu N, Flemming CR (2005) Gap junctional hemichannel-mediated ATP release and hearing controls in the inner ear. Proc Natl Acad Sci USA 102: 18724–18729.
[9]
Zhao HB (2005) Connexin26 is responsible for anionic molecule permeability in the cochlea for intercellular signalling and metabolic communications. Eur J Neurosci 21 (7) 1859–1868.
[10]
Wangemann P (1996) Ca2+-dependent release of ATP from the organ of Corti measured with a luciferin-luciferase bioluminescence assay. Audit Neurosci 2: 187–192.
[11]
Liang Y, Huang L, Yang J (2009) Differential expression of ryanodine receptor in the developing rat cochlea. Eur J Histochem 53: 249–260.
[12]
Hinojosa R (1977) A note on development of Corti's organ. Acta Otolaryngol 84: 238–251.
[13]
Tritsch NX, Yi E, Gale JE, Glowatzki E, Bergles DE (2007) The origin of spontaneous activity in the developing auditory system. Nature 450: 50–55.
[14]
White PN, Thorne PR, Housley GD, Mockett B, Burnstock G (1995) Quinacrine staining of marginal cells in the stria vascularis of the guinea-pig cochlea: a possible source of extracellular ATP? Hear Res 90: 97–105.
[15]
Marcus DC, Sunose H, Liu J, Bennett T, Shen Z, et al. (1998) Protein kinase C mediates P2U purinergic receptor inhibitions of K+ channel in apical membranes of strial marginal cells. 115: 82–92.
[16]
Enkvetchakul D, Loussouarn G, Makhina E, Nichols CG (2001) ATP Interaction with the open state of the K(ATP) channel. Biophys J 80: 719–728.
[17]
Mu?oz DJ, Kendrick IS, Rassam M, Thorne PR (2001) Vesicular storage of adenosine triphosphate in the guinea-pig cochlear lateral wall and concentrations of ATP in the endolymph during sound exposure and hypoxia. Acta Otolaryngol 121: 10–15.
[18]
Irvin JL, Irvin EM (1954) The interaction of quinacrine with adenine nucleotides. J Biol Chem 210: 45–56.
[19]
Kasoer M, Stosiek P, Varga A, Karsten U (1987) Immunohistochemical demonstration of the co-expression of vimentin and cytokeratin (s) in the guinea pig cochlea. Arch Otorhinolaryngol 244 (1) 66–8.
[20]
Yoshimori T, Yamamoto A, Futai M, Tashiro Y (1991) Bafilomycin A1, a specific inhibitor of vacuolar-type H(+)-ATPase, inhibits acidification and protein degradation in lysosomes of cultured cells. J Biol Chem 266: 17707–17712.
[21]
Bowman EJ, Siebers A, Altendorf K (1988) Bafilomycins: a class of inhibitors of membrane ATPases from microorganisms, animal cells, and plant cells. Proc Natl Acad Sci U S A 85: 7972–7976.
[22]
Koh WS, Yang KH, Kaminski NE (1995) Cyclic AMP Is an Eessential Ffactor in Iimmune Rresponses. Biochem Biophys Res Commun 206: 703–709.
[23]
Aixia Dou, Jianhua Tong (2004) The cAMP signal pathway and regulation of genetic expression. Academic Journal of Shanghai Second Medical University 24: 1070–1073.
[24]
Scharff O, Foder B, Thastrup O, Hofmann B, M?ller J, et al. (1988) Effect of thapsigargin on cytoplasmic Ca2+ and proliferation of human lymphocytes in relation to AIDS. Biochim Biophys Acta 972: 257–264.
[25]
Boitano S, Dirksen ER, Sanderson MJ (1992) Intercellular propagation of calcium waves mediated by inositol trisphosphate. Science 258: 292–295.
[26]
Churchill GC, Atkinson MM, Louis CF (1996) Mechanisms stimulation and intercellular communication increases intracellular Ca2+ in epithelial cells. J Cell Sci 109: 355–365.
[27]
Willems PH, Van de Put FH, Engbersen R, Bosch RR, Van Hoof HJ, et al. (1994) Induction of Ca2+ oscillations by selective, U73122-mediated, depletion of inostol- trisphosphate- sensitive Ca2+ stores in rabbit pancreatic acinar cells. Pflugers Arch 427: 233–243.
[28]
Vishwanath BS, Gowda TV (1987) Interaction of aristolochic acid with Vipera russelli phospholipase A2: Its effect on enzymatic and pathological activities. Toxicon 25: 929–937.
[29]
Friedmann IR, Ballantyne J (1984) Ultrastructural Atlas of the Inner Ear. Butterworths London 30: 45–50.
[30]
Zhang ZJ, Chen G, Zhou W, Song A, Xu T, et al. (2007) Regulated ATP release from astrocytes through lysosome exocytosis. Nat Cell Biol 9: 945–957.
[31]
Londos C, Wolff J (1977) Two distinct adenosine-sensitive sites on adenylate cyclase. Proc Natl Acad Sci USA 74: 5482–5486.
[32]
Wangemann P (2002) K+ cycling and the endocochlear potential. Hear Res 165: 1–9.
[33]
Suzuki M, Ikeda K, Sunose H, et al. (1995) ATP-induced increase in intracellular Ca2+ concentration in the cultured marginal cell of the strial vascularis of guinea-pigs. Hear Res 86: 68–76.
[34]
Braet K, Vandamme W, Martin PE, Evans WH, Leybaert L (2003) Photoliberating inositol-1, 4, 5-trisphosphate triggers ATP release that is blocked by the connexin mimetic peptide gap 26. Cell Calcium 33: 37–48.
[35]
Utsuyama M, Varga Z, Fukami K, Homma Y, Hirokawa K (1993) Influence of age on the signal transduction of T cells in mice. Int Immunol 5: 1177–1182.
[36]
Asaoka Y, Nakamura S, Yoshida K, Nishizuka Y (1992) Protein kinase C, calcium and phospholipid degradation. Trends Biochem Sci 17: 414–417.
[37]
Sanderson MJ, Charles AC, Boitano S, Dirksen ER (1994) Mechanisms and function of intercellular calcium signaling. Mol Cell Endrocrinol 98: 173–187.