Background and Aims High protein (HP) diets are suggested to positively modulate obesity and associated increased prevalence of non-alcoholic fatty liver (NAFLD) disease in humans and rodents. The aim of our study was to detect mechanisms by which a HP diet affects hepatic lipid accumulation. Methods To investigate the acute and long term effect of high protein ingestion on hepatic lipid accumulation under both low and high fat (HF) conditions, mice were fed combinations of high (35 energy%) or low (10 energy%) fat and high (50 energy%) or normal (15 energy%) protein diets for 1 or 12 weeks. Effects on body composition, liver fat, VLDL production rate and the hepatic transcriptome were investigated. Results Mice fed the HP diets displayed a lower body weight, developed less adiposity and decreased hepatic lipid accumulation, which could be attributed to a combination of several processes. Next to an increased hepatic VLDL production rate, increased energy utilisation due to enhanced protein catabolic processes, such as transamination, TCA cycle and oxidative phosphorylation was found upon high protein ingestion. Conclusion Feeding a HP diet prevented the development of NAFLD by enhancing lipid secretion into VLDL particles and a less efficient use of ingested calories.
References
[1]
Zelber-Sagi S, Ratziu V, Oren R (2011) Nutrition and physical activity in NAFLD: an overview of the epidemiological evidence. World J Gastroenterol 17: 3377–3389.
[2]
Scorletti E, Calder PC, Byrne CD (2011) Non-alcoholic fatty liver disease and cardiovascular risk: metabolic aspects and novel treatments. Endocrine 40: 332–343.
Williams CD, Stengel J, Asike MI, Torres DM, Shaw J, et al. (2011) Prevalence of Nonalcoholic Fatty Liver Disease and Nonalcoholic Steatohepatitis Among a Largely Middle-Aged Population Utilizing Ultrasound and Liver Biopsy: A Prospective Study. Gastroenterology 140: 124–131.
[5]
Gholam PM, Flancbaum L, MacHan JT, Charney DA, Kotler DP (2007) Nonalcoholic fatty liver disease in severely obese subjects. Am J Gastroenterol 102: 399–408.
[6]
Beymer C, Kowdley KV, Larson A, Edmonson P, Dellinger EP, et al. (2003) Prevalence and Predictors of Asymptomatic Liver Disease in Patients Undergoing Gastric Bypass Surgery. Arch Surg 138: 1240–1244.
[7]
Chalasani N, Guo X, Loomba R, Goodarzi MO, Haritunians T, et al. (2010) Genome-Wide Association Study Identifies Variants Associated With Histologic Features of Nonalcoholic Fatty Liver Disease. Gastroenterology 139: 1567–1576.e1566.
[8]
Peter A, Kantartzis K, Machicao F, Machann J, Wagner S, et al.. (2011) Visceral obesity modulates the impact of apolipoprotein C3 gene variants on liver fat content. Int J Obes (Lond).
[9]
Krasnoff JB, Painter PL, Wallace JP, Bass NM, Merriman RB (2008) Health-related fitness and physical activity in patients with nonalcoholic fatty liver disease. Hepatology 47: 1158–1165.
[10]
Kantartzis K, Thamer C, Peter A, Machann J, Schick F, et al. (2009) High cardiorespiratory fitness is an independent predictor of the reduction in liver fat during a lifestyle intervention in non-alcoholic fatty liver disease. Gut 58: 1281–1288.
[11]
Suzuki A, Lindor K, Saver JS, Lymp J, Mendes F, et al. (2005) Effect of changes on body weight and lifestyle in nonalcoholic fatty liver disease. J Hepatol 43: 1060–1066.
[12]
Postic C, Girard J (2008) Contribution of de novo fatty acid synthesis to hepatic steatosis and insulin resistance: lessons from genetically engineered mice. J Clin Invest 118: 829–838.
[13]
de Wit NJW, Afman LA, Mensink M, Müller M (2012) Phenotyping the effect of diet on non-alcoholic fatty liver disease. Journal of hepatology.
[14]
Westerbacka J, Lammi K, H?kkinen A-M, Rissanen A, Salminen I, et al. (2005) Dietary Fat Content Modifies Liver Fat in Overweight Nondiabetic Subjects. J Clin Endocrinol Metab 90: 2804–2809.
[15]
Bortolotti M, Kreis R, Debard C, Cariou B, Faeh D, et al. (2009) High protein intake reduces intrahepatocellular lipid deposition in humans. Am J Clin Nutr 90: 1002–1010.
[16]
Duval C, Thissen U, Keshtkar S, Accart B, Stienstra R, et al. (2010) Adipose tissue dysfunction signals progression of hepatic steatosis towards nonalcoholic steatohepatitis in C57BL/6 mice. Diabetes 59: 3181–3191.
[17]
Patsouris D, Reddy JK, Muller M, Kersten S (2006) Peroxisome proliferator-activated receptor alpha mediates the effects of high-fat diet on hepatic gene expression. Endocrinology 147: 1508–1516.
[18]
Abdelmalek MF, Suzuki A, Guy C, Unalp-Arida A, Colvin R, et al. (2010) Increased fructose consumption is associated with fibrosis severity in patients with nonalcoholic fatty liver disease. Hepatology 51: 1961–1971.
[19]
Yki-Jarvinen H (2010) Nutritional modulation of nonalcoholic fatty liver disease and insulin resistance: human data. Curr Opin Clin Nutr Metab Care 13: 709–714.
[20]
Aragno M, Tomasinelli CE, Vercellinatto I, Catalano MG, Collino M, et al. (2009) SREBP-1c in nonalcoholic fatty liver disease induced by Western-type high-fat diet plus fructose in rats. Free Radic Biol Med 47: 1067–1074.
[21]
Kawasaki T, Igarashi K, Koeda T, Sugimoto K, Nakagawa K, et al. (2009) Rats fed fructose-enriched diets have characteristics of nonalcoholic hepatic steatosis. J Nutr 139: 2067–2071.
[22]
Shertzer HG, Woods SE, Krishan M, Genter MB, Pearson KJ (2011) Dietary whey protein lowers the risk for metabolic disease in mice fed a high-fat diet. J Nutr 141: 582–587.
[23]
Lacroix M, Gaudichon C, Martin A, Morens C, Mathe V, et al. (2004) A long-term high-protein diet markedly reduces adipose tissue without major side effects in Wistar male rats. Am J Physiol Regul Integr Comp Physiol 287: R934–942.
[24]
Lin K, Kools H, de Groot PJ, Gavai AK, Basnet RK, et al. (2011) MADMAX – Management and analysis database for multiple ~omics experiments. J Integr Bioinform 8: 160.
[25]
Dai M, Wang P, Boyd AD, Kostov G, Athey B, et al. (2005) Evolving gene/transcript definitions significantly alter the interpretation of GeneChip data. Nucleic Acids Res 33: e175.
[26]
Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, et al. (2003) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4: 249–264.
[27]
Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, et al. (2005) Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102: 15545–15550.
[28]
Merico D, Isserlin R, Stueker O, Emili A, Bader GD (2010) Enrichment Map: A Network-Based Method for Gene-Set Enrichment Visualization and Interpretation. PloS one 5: e13984.
[29]
Smoot ME, Ono K, Ruscheinski J, Wang P-L, Ideker T (2011) Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 27: 431–432.
[30]
Jean C, Rome S, Mathé V, Huneau J-F, Aattouri N, et al. (2001) Metabolic Evidence for Adaptation to a High Protein Diet in Rats. J Nutr 131: 91–98.
[31]
Te Morenga LA, Levers MT, Williams SM, Brown RC, Mann J (2011) Comparison of high protein and high fiber weight-loss diets in women with risk factors for the metabolic syndrome: a randomized trial. Nutr J 10: 40.
[32]
Evangelista LS, Heber D, Li Z, Bowerman S, Hamilton MA, et al. (2009) Reduced body weight and adiposity with a high-protein diet improves functional status, lipid profiles, glycemic control, and quality of life in patients with heart failure: a feasibility study. J Cardiovasc Nurs 24: 207–215.
[33]
Wu G (2009) Amino acids: metabolism, functions, and nutrition. Amino Acids 37: 1–17.
[34]
Chevalier L, Bos C, Azzout-Marniche D, Dardevet D, Tome D, et al. (2010) Dietary protein regulates hepatic constitutive protein anabolism in rats in a dose-dependent manner and independently of energy nutrient composition. American journal of physiology Regulatory, integrative and comparative physiology 299: R1720–1730.
[35]
Eisenstein RS, Harper AE (1991) Relationship between protein intake and hepatic protein synthesis in rats. J Nutr 121: 1581–1590.
[36]
Frank JW, Escobar J, Suryawan A, Nguyen HV, Kimball SR, et al. (2006) Dietary protein and lactose increase translation initiation factor activation and tissue protein synthesis in neonatal pigs. Am J Physiol Endocrinol Metab 290: E225–233.
[37]
Noguchi Y, Nishikata N, Shikata N, Kimura Y, Aleman JO, et al. (2010) Ketogenic essential amino acids modulate lipid synthetic pathways and prevent hepatic steatosis in mice. PLoS One 5: e12057.
[38]
Uebanso T, Taketani Y, Fukaya M, Sato K, Takei Y, et al. (2009) Hypocaloric high-protein diet improves fatty liver and hypertriglyceridemia in sucrose-fed obese rats via two pathways. Am J Physiol Endocrinol Metab 297: E76–84.
[39]
Do G-M, Oh HY, Kwon E-Y, Cho Y-y, Shin S-k, et al. (2011) Long-term adaptation of global transcription and metabolism in the liver of high-fat diet-fed C57BL/6J mice. Mol Nutr Food Res 55: S173–S185.
[40]
Kim S, Sohn I, Ahn J-I, Lee K-H, Lee YS, et al. (2004) Hepatic gene expression profiles in a long-term high-fat diet-induced obesity mouse model. Gene 340: 99–109.
[41]
Kleemann R, van Erk M, Verschuren L, van den Hoek AM, Koek M, et al. (2010) Time-Resolved and Tissue-Specific Systems Analysis of the Pathogenesis of Insulin Resistance. PloS one 5: e8817.
[42]
Stepien M, Gaudichon C, Fromentin G, Even P, Tome D, et al. (2011) Increasing protein at the expense of carbohydrate in the diet down-regulates glucose utilization as glucose sparing effect in rats. PloS one 6: e14664.
[43]
Fromentin C, Azzout-Marniche D, Tome D, Even P, Luengo C, et al. (2011) The postprandial use of dietary amino acids as an energy substrate is delayed after the deamination process in rats adapted for 2 weeks to a high protein diet. Amino Acids 40: 1461–1472.
[44]
Abete I, Parra D, De Morentin BM, Alfredo Martinez J (2009) Effects of two energy-restricted diets differing in the carbohydrate/protein ratio on weight loss and oxidative changes of obese men. Int J Food Sci Nutr 60 Suppl 31–13.
[45]
Bortolotti M, Schneiter P, Tappy L (2010) Effects of dietary protein on post-prandial lipid metabolism in healthy humans. e-SPEN 5: e191–e197.
[46]
Baird L, Dinkova-Kostova AT (2011) The cytoprotective role of the Keap1-Nrf2 pathway. Arch Toxicol 85: 241–272.
[47]
Muller M, Banning A, Brigelius-Flohe R, Kipp A (2010) Nrf2 target genes are induced under marginal selenium-deficiency. Genes Nutr 5: 297–307.
[48]
Wu G, Fang Y-Z, Yang S, Lupton JR, Turner ND (2004) Glutathione Metabolism and Its Implications for Health. J Nutr 134: 489–492.