全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

Confocal Laser Scanning Microscopy Evaluation of an Acellular Dermis Tissue Transplant (Epiflex?)

DOI: 10.1371/journal.pone.0045991

Full-Text   Cite this paper   Add to My Lib

Abstract:

The structure of a biological scaffold is a major determinant of its biological characteristics and its interaction with cells. An acellular dermis tissue transplant must undergo a series of processing steps, to remove cells and genetic material and provide the sterility required for surgical use. During manufacturing and sterilization the structure and composition of tissue transplants may change. The composition of the human cell-free dermis transplant Epiflex? was investigated with specific attention paid to its structure, matrix composition, cellular content and biomechanics. We demonstrated that after processing, the structure of Epiflex remains almost unchanged with an intact collagen network and extracellular matrix (ECM) protein composition providing natural cell interactions. Although the ready to use transplant does contain some cellular and DNA debris, the processing procedure results in a total destruction of cells and active DNA which is a requirement for an immunologically inert and biologically safe substrate. Its biomechanical parameters do not change significantly during the processing.

References

[1]  Angele P, Abke J, Kujat R, Faltermeier H, Schumann D, et al. (2004) Influence of different collagen species on physico-chemical properties of crosslinked collagen matrices. Biomaterials 25: 2831–2841.
[2]  Badylak SF, Freytes DO, Gilbert TW (2009) Extracellular matrix as a biological scaffold material: Structure and function. Acta Biomater 5: 1–13.
[3]  Chen F, Yoo JJ, Atala A (1999) Acellular collagen matrix as a possible "off the shelf" biomaterial for urethral repair. Urology 54: 407–410.
[4]  Dellgren G, Eriksson M, Brodin LA, Radegran K (1999) The extended Biocor stentless aortic bioprosthesis. Early clinical experience. Scand Cardiovasc J 33: 259–264.
[5]  Harper C (2001) Permacol: clinical experience with a new biomaterial. Hosp Med 62: 90–95.
[6]  Badylak SF (2004) Xenogeneic extracellular matrix as a scaffold for tissue reconstruction. Transpl Immunol 12: 367–377.
[7]  Kolker AR, Brown DJ, Redstone JS, Scarpinato VM, Wallack MK (2005) Multilayer reconstruction of abdominal wall defects with acellular dermal allograft (AlloDerm) and component separation. Ann Plast Surg 55: 36–41; discussion 41–32.
[8]  Erdag G, Morgan JR (2004) Allogeneic versus xenogeneic immune reaction to bioengineered skin grafts. Cell Transplant 13: 701–712.
[9]  Gock H, Murray-Segal L, Salvaris E, Cowan P, D'Apice AJ (2004) Allogeneic sensitization is more effective than xenogeneic sensitization in eliciting Gal-mediated skin graft rejection. Transplantation 77: 751–753.
[10]  Budd JS, Allen KE, Hartley G, Bell PR (1991) The effect of preformed confluent endothelial cell monolayers on the patency and thrombogenicity of small calibre vascular grafts. Eur J Vasc Surg 5: 397–405.
[11]  Gilbert TW, Sellaro TL, Badylak SF (2006) Decellularization of tissues and organs. Biomaterials 27: 3675–3683.
[12]  Rossner E, Smith MD, Petschke B, Schmidt K, Vitacolonna M, et al. (2010) Epiflex((R)) A new decellularised human skin tissue transplant: manufacture and properties. Cell Tissue Bank.
[13]  Gilbert TW, Freund JM, Badylak SF (2009) Quantification of DNA in biologic scaffold materials. J Surg Res 152: 135–139.
[14]  Roessner ED, Thier S, Hohenberger P, Schwarz M, Pott P, et al. (2009) Acellular Dermal Matrix Seeded with Autologous Fibroblasts Improves Wound Breaking Strength in a Rodent Soft Tissue Damage Model in Neoadjuvant Settings. J Biomater Appl.
[15]  Toole BP (2004) Hyaluronan: from extracellular glue to pericellular cue. Nat Rev Cancer 4: 528–539.
[16]  Hofmann S, Hagenmuller H, Koch AM, Muller R, Vunjak-Novakovic G, et al. (2007) Control of in vitro tissue-engineered bone-like structures using human mesenchymal stem cells and porous silk scaffolds. Biomaterials 28: 1152–1162.
[17]  Pierard GE, Lapiere CM (1977) Physiopathological variations in the mechanical properties of skin. Arch Dermatol Res 260: 231–239.
[18]  Balbir-Gurman A, Denton CP, Nichols B, Knight CJ, Nahir AM, et al. (2002) Non-invasive measurement of biomechanical skin properties in systemic sclerosis. Ann Rheum Dis 61: 237–241.
[19]  Edwards C, Marks R (1995) Evaluation of biomechanical properties of human skin. Clin Dermatol 13: 375–380.
[20]  Elsner P, Wilhelm D, Maibach HI (1990) Mechanical properties of human forearm and vulvar skin. Br J Dermatol 122: 607–614.
[21]  Barber FA, Aziz-Jacobo J (2009) Biomechanical testing of commercially available soft-tissue augmentation materials. Arthroscopy 25: 1233–1239.
[22]  Arnold GA, Mathews KG, Roe S, Mente P, Seaboch T (2009) Biomechanical comparison of four soft tissue replacement materials: an in vitro evaluation of single and multilaminate porcine small intestinal submucosa, canine fascia lata, and polypropylene mesh. Vet Surg 38: 834–844.
[23]  Pearsall AWt, Hollis JM, Russell GV Jr, Scheer Z (2003) A biomechanical comparison of three lower extremity tendons for ligamentous reconstruction about the knee. Arthroscopy 19: 1091–1096.
[24]  Juliano RL, Haskill S (1993) Signal transduction from the extracellular matrix. J Cell Biol 120: 577–585.
[25]  Hynes RO (1992) Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69: 11–25.
[26]  Sheppard D (2000) In vivo functions of integrins: lessons from null mutations in mice. Matrix Biol 19: 203–209.
[27]  Rozengurt E (1995) Convergent signalling in the action of integrins, neuropeptides, growth factors and oncogenes. Cancer Surv 24: 81–96.
[28]  Zervolea I, Kletsas D, Stathakos D (2000) Autocrine regulation of proliferation and extracellular matrix homeostasis in human fibroblasts. Biochem Biophys Res Commun 276: 785–790.
[29]  Yurchenco PD, Schittny JC (1990) Molecular architecture of basement membranes. FASEB J 4: 1577–1590.
[30]  Schwarzbauer J (1999) Basement membranes: Putting up the barriers. Curr Biol 9: R242–244.
[31]  Ponce ML, Nomizu M, Delgado MC, Kuratomi Y, Hoffman MP, et al. (1999) Identification of endothelial cell binding sites on the laminin gamma 1 chain. Circ Res 84: 688–694.
[32]  Borradori L, Sonnenberg A (1996) Hemidesmosomes: roles in adhesion, signaling and human diseases. Curr Opin Cell Biol 8: 647–656.
[33]  Brown B, Lindberg K, Reing J, Stolz DB, Badylak SF (2006) The basement membrane component of biologic scaffolds derived from extracellular matrix. Tissue Eng 12: 519–526.
[34]  Chiquet-Ehrismann R, Kalla P, Pearson CA, Beck K, Chiquet M (1988) Tenascin interferes with fibronectin action. Cell 53: 383–390.
[35]  Badylak SF, Lantz GC, Coffey A, Geddes LA (1989) Small intestinal submucosa as a large diameter vascular graft in the dog. J Surg Res 47: 74–80.
[36]  Badylak SF, Tullius R, Kokini K, Shelbourne KD, Klootwyk T, et al. (1995) The use of xenogeneic small intestinal submucosa as a biomaterial for Achilles tendon repair in a dog model. J Biomed Mater Res 29: 977–985.
[37]  Hodde JP, Badylak SF, Brightman AO, Voytik-Harbin SL (1996) Glycosaminoglycan content of small intestinal submucosa: a bioscaffold for tissue replacement. Tissue Eng 2: 209–217.
[38]  Hodde J, Record R, Tullius R, Badylak S (2002) Fibronectin peptides mediate HMEC adhesion to porcine-derived extracellular matrix. Biomaterials 23: 1841–1848.
[39]  Xu C, Inai R, Kotaki M, Ramakrishna S (2004) Electrospun nanofiber fabrication as synthetic extracellular matrix and its potential for vascular tissue engineering. Tissue Eng 10: 1160–1168.
[40]  Zhong S, Teo WE, Zhu X, Beuerman R, Ramakrishna S, et al. (2005) Formation of collagen-glycosaminoglycan blended nanofibrous scaffolds and their biological properties. Biomacromolecules 6: 2998–3004.
[41]  Li WJ, Laurencin CT, Caterson EJ, Tuan RS, Ko FK (2002) Electrospun nanofibrous structure: a novel scaffold for tissue engineering. J Biomed Mater Res 60: 613–621.
[42]  Ma Z, Kotaki M, Inai R, Ramakrishna S (2005) Potential of nanofiber matrix as tissue-engineering scaffolds. Tissue Eng 11: 101–109.
[43]  Wang JH, Yao CH, Chuang WY, Young TH (2000) Development of biodegradable polyesterurethane membranes with different surface morphologies for the culture of osteoblasts. J Biomed Mater Res 51: 761–770.
[44]  WW Minuth, Strehl R, Schumacher K (2003) Zukunftstechnologie Tissue Engineering. Weinheim, Germany: WILEY-VCH Verlag
[45]  Roessner E (2010) A new decellularised human skin tissue transplant: manufacture and properties, Cell and Tissue Banking. In Press.
[46]  Badylak SF, Gilbert TW (2008) Immune response to biologic scaffold materials. Semin Immunol 20: 109–116.
[47]  Zheng MH, Chen J, Kirilak Y, Willers C, Xu J, et al. (2005) Porcine small intestine submucosa (SIS) is not an acellular collagenous matrix and contains porcine DNA: possible implications in human implantation. J Biomed Mater Res B Appl Biomater 73: 61–67.
[48]  Butler CE, Prieto VG (2004) Reduction of adhesions with composite AlloDerm/polypropylene mesh implants for abdominal wall reconstruction. Plast Reconstr Surg 114: 464–473.
[49]  Atala A, Bauer SB, Soker S, Yoo JJ, Retik AB (2006) Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet 367: 1241–1246.
[50]  Barber FA, Herbert MA, Coons DA (2006) Tendon augmentation grafts: biomechanical failure loads and failure patterns. Arthroscopy 22: 534–538.
[51]  Karpelowsky JS, Millar AJ (2010) Porcine dermal collagen (Permacol((R))) for chest and abdominal wall reconstruction in thoraco-omphalopagus conjoined twin separation. Pediatr Surg Int 26: 315–318.
[52]  Ueno T, Pickett LC, de la Fuente SG, Lawson DC, Pappas TN (2004) Clinical application of porcine small intestinal submucosa in the management of infected or potentially contaminated abdominal defects. J Gastrointest Surg 8: 109–112.
[53]  Mertsching H, Schanz J, Steger V, Schandar M, Schenk M, et al. (2009) Generation and transplantation of an autologous vascularized bioartificial human tissue. Transplantation 88: 203–210.
[54]  Zantop T, Gilbert TW, Yoder MC, Badylak SF (2006) Extracellular matrix scaffolds are repopulated by bone marrow-derived cells in a mouse model of achilles tendon reconstruction. J Orthop Res 24: 1299–1309.
[55]  Lantz GC, Badylak SF, Hiles MC, Coffey AC, Geddes LA, et al. (1993) Small intestinal submucosa as a vascular graft: a review. J Invest Surg 6: 297–310.
[56]  Edelman DS (2002) Laparoscopic herniorrhaphy with porcine small intestinal submucosa: a preliminary study. JSLS 6: 203–205.
[57]  Macher BA, Galili U (2008) The Galalpha1,3Galbeta1,4GlcNAc-R (alpha-Gal) epitope: a carbohydrate of unique evolution and clinical relevance. Biochim Biophys Acta 1780: 75–88.
[58]  Boer U, Lohrenz A, Klingenberg M, Pich A, Haverich A, et al. (2011) The effect of detergent-based decellularization procedures on cellular proteins and immunogenicity in equine carotid artery grafts. Biomaterials 32: 9730–9737.
[59]  Xu H, Sandor M, Qi S, Lombardi J, Connor J, et al. (2012) Implantation of a porcine acellular dermal graft in a primate model of rotator cuff repair. J Shoulder Elbow Surg 21: 580–588.
[60]  Miyagawa S, Ueno T, Nagashima H, Takama Y, Fukuzawa M (2012) Carbohydrate antigens. Curr Opin Organ Transplant 17: 174–179.
[61]  Kim YG, Gil GC, Harvey DJ, Kim BG (2008) Structural analysis of alpha-Gal and new non-Gal carbohydrate epitopes from specific pathogen-free miniature pig kidney. Proteomics 8: 2596–2610.
[62]  Ansaloni L, Cambrini P, Catena F, Di Saverio S, Gagliardi S, et al. (2007) Immune response to small intestinal submucosa (surgisis) implant in humans: preliminary observations. J Invest Surg 20: 237–241.
[63]  Bayrak A, Tyralla M, Ladhoff J, Schleicher M, Stock UA, et al. (2010) Human immune responses to porcine xenogeneic matrices and their extracellular matrix constituents in vitro. Biomaterials 31: 3793–3803.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133