It has long been observed that many neuronal types position their nuclei within restricted cytoplasmic boundaries. A striking example is the apical localization of cone photoreceptors nuclei at the outer edge of the outer nuclear layer of mammalian retinas. Yet, little is known about how such nuclear spatial confinement is achieved and further maintained. Linkers of the Nucleoskeleton to the Cytoskeleton (LINC complexes) consist of evolutionary-conserved macromolecular assemblies that span the nuclear envelope to connect the nucleus with the peripheral cytoskeleton. Here, we applied a new transgenic strategy to disrupt LINC complexes either in cones or rods. In adult cones, we observed a drastic nuclear mislocalization on the basal side of the ONL that affected cone terminals overall architecture. We further provide evidence that this phenotype may stem from the inability of cone precursor nuclei to migrate towards the apical side of the outer nuclear layer during early postnatal retinal development. By contrast, disruption of LINC complexes within rod photoreceptors, whose nuclei are scattered across the outer nuclear layer, had no effect on the positioning of their nuclei thereby emphasizing differential requirements for LINC complexes by different neuronal types. We further show that Sun1, a component of LINC complexes, but not A-type lamins, which interact with LINC complexes at the nuclear envelope, participate in cone nuclei positioning. This study provides key mechanistic aspects underlying the well-known spatial confinement of cone nuclei as well as a new mouse model to evaluate the pathological relevance of nuclear mispositioning.
References
[1]
Chiquet C, Dkhissi-Benyahya O, Chounlamountri N, Szel A, Degrip WJ, et al. (2002) Characterization of calbindin-positive cones in primates. Neuroscience 115: 1323–1333.
[2]
Carter-Dawson LD, LaVail MM (1979) Rods and cones in the mouse retina. I. Structural analysis using light and electron microscopy. J Comp Neurol 188: 245–262.
[3]
Stuurman N, Heins S, Aebi U (1998) Nuclear lamins: their structure, assembly, and interactions. J Struct Biol 122: 42–66.
[4]
Hutchison CJ (2002) Lamins: building blocks or regulators of gene expression? Nat Rev Mol Cell Biol 3: 848–858.
[5]
Burke B, Roux KJ (2009) Nuclei take a position: managing nuclear location. Dev Cell 17: 587–597.
[6]
Razafsky D, Hodzic D (2009) Bringing KASH under the SUN: the many faces of nucleo-cytoskeletal connections. J Cell Biol 186: 461–472.
[7]
Starr DA, Fridolfsson HN (2010) Interactions Between Nuclei and the Cytoskeleton Are Mediated by SUN-KASH Nuclear-Envelope Bridges. Annu Rev Cell Dev Biol 26: 421–444.
[8]
Hodzic DM, Yeater DB, Bengtsson L, Otto H, Stahl PD (2004) Sun2 is a novel mammalian inner nuclear membrane protein. J Biol Chem 279: 25805–25812.
[9]
Haque F, Lloyd DJ, Smallwood DT, Dent CL, Shanahan CM, et al. (2006) SUN1 interacts with nuclear lamin A and cytoplasmic nesprins to provide a physical connection between the nuclear lamina and the cytoskeleton. Mol Cell Biol 26: 3738–3751.
[10]
Crisp M, Liu Q, Roux K, Rattner JB, Shanahan C, et al. (2006) Coupling of the nucleus and cytoplasm: role of the LINC complex. J Cell Biol 172: 41–53.
[11]
Zhang Q, Ragnauth C, Greener MJ, Shanahan CM, Roberts RG (2002) The nesprins are giant actin-binding proteins, orthologous to Drosophila melanogaster muscle protein MSP-300. Genomics 80: 473–481.
[12]
Wilhelmsen K, Litjens SH, Kuikman I, Tshimbalanga N, Janssen H, et al. (2005) Nesprin-3, a novel outer nuclear membrane protein, associates with the cytoskeletal linker protein plectin. J Cell Biol 171: 799–810.
[13]
Roux KJ, Crisp ML, Liu Q, Kim D, Kozlov S, et al. (2009) Nesprin 4 is an outer nuclear membrane protein that can induce kinesin-mediated cell polarization. Proc Natl Acad Sci U S A 106: 2194–2199.
[14]
Starr DA, Han M (2002) Role of ANC-1 in tethering nuclei to the actin cytoskeleton. Science 298: 406–409.
[15]
Stewart-Hutchinson PJ, Hale CM, Wirtz D, Hodzic D (2008) Structural requirements for the assembly of LINC complexes and their function in cellular mechanical stiffness. Exp Cell Res 314: 1892–1905.
[16]
Padmakumar VC, Abraham S, Braune S, Noegel AA, Tunggal B, et al. (2004) Enaptin, a giant actin-binding protein, is an element of the nuclear membrane and the actin cytoskeleton. Exp Cell Res 295: 330–339.
[17]
Fridolfsson HN, Starr DA (2010) Kinesin-1 and dynein at the nuclear envelope mediate the bidirectional migrations of nuclei. J Cell Biol 191: 115–128.
[18]
Meyerzon M, Fridolfsson HN, Ly N, McNally FJ, Starr DA (2009) UNC-83 is a nuclear-specific cargo adaptor for kinesin-1 mediated nuclear migration. Development In press.
[19]
Zhou X, Graumann K, Evans DE, Meier I (2012) Novel plant SUN-KASH bridges are involved in RanGAP anchoring and nuclear shape determination. J Cell Biol 196: 203–211.
[20]
Zhou Z, Du X, Cai Z, Song X, Zhang H, et al. (2012) Structure of Sad1-UNC84 homology (SUN) domain defines features of molecular bridge in nuclear envelope. J Biol Chem 287: 5317–5326.
[21]
Starr DA, Fischer JA (2005) KASH 'n Karry: the KASH domain family of cargo-specific cytoskeletal adaptor proteins. Bioessays 27: 1136–1146.
[22]
Yu J, Lei K, Zhou M, Craft CM, Xu G, et al. (2011) KASH protein Syne-2/Nesprin-2 and SUN proteins SUN1/2 mediate nuclear migration during mammalian retinal development. Hum Mol Genet 20: 1061–1073.
[23]
Zhang J, Felder A, Liu Y, Guo LT, Lange S, et al. (2009) Nesprin 1 is critical for nuclear positioning and anchorage. Hum Mol Genet 19: 329–341.
[24]
Zhang X, Xu R, Zhu B, Yang X, Ding X, et al. (2007) Syne-1 and Syne-2 play crucial roles in myonuclear anchorage and motor neuron innervation. Development 134: 901–908.
[25]
Zhang X, Lei K, Yuan X, Wu X, Zhuang Y, et al. (2009) SUN1/2 and Syne/Nesprin-1/2 complexes connect centrosome to the nucleus during neurogenesis and neuronal migration in mice. Neuron 64: 173–187.
Moeller MJ, Soofi A, Sanden S, Floege J, Kriz W, et al. (2005) An efficient system for tissue-specific overexpression of transgenes in podocytes in vivo. Am J Physiol Renal Physiol 289: F481–488.
[28]
Sullivan T, Escalante-Alcalde D, Bhatt H, Anver M, Bhat N, et al. (1999) Loss of A-type lamin expression compromises nuclear envelope integrity leading to muscular dystrophy. J Cell Biol 147: 913–920.
[29]
Le YZ, Zheng L, Zheng W, Ash JD, Agbaga MP, et al. (2006) Mouse opsin promoter-directed Cre recombinase expression in transgenic mice. Mol Vis 12: 389–398.
[30]
Swindell EC, Bailey TJ, Loosli F, Liu C, Amaya-Manzanares F, et al. (2006) Rx-Cre, a tool for inactivation of gene expression in the developing retina. Genesis 44: 361–363.
[31]
Lei K, Zhang X, Ding X, Guo X, Chen M, et al. (2009) SUN1 and SUN2 play critical but partially redundant roles in anchoring nuclei in skeletal muscle cells in mice. Proc Natl Acad Sci U S A 106: 10207–10212.
[32]
Del Bene F, Wehman AM, Link BA, Baier H (2008) Regulation of neurogenesis by interkinetic nuclear migration through an apical-basal notch gradient. Cell 134: 1055–1065.
[33]
Rich KA, Zhan Y, Blanks JC (1997) Migration and synaptogenesis of cone photoreceptors in the developing mouse retina. J Comp Neurol 388: 47–63.
[34]
Trifunovic D, Dengler K, Michalakis S, Zrenner E, Wissinger B, et al. (2010) cGMP-dependent cone photoreceptor degeneration in the cpfl1 mouse retina. J Comp Neurol 518: 3604–3617.
[35]
Lombardi ML, Jaalouk DE, Shanahan CM, Burke B, Roux KJ, et al. (2011) The interaction between nesprins and sun proteins at the nuclear envelope is critical for force transmission between the nucleus and cytoskeleton. J Biol Chem 286: 26743–26753.
[36]
Grady RM, Starr DA, Ackerman GL, Sanes JR, Han M (2005) Syne proteins anchor muscle nuclei at the neuromuscular junction. Proc Natl Acad Sci U S A 102: 4359–4364.
[37]
Patterson K, Molofsky AB, Robinson C, Acosta S, Cater C, et al. (2004) The functions of Klarsicht and nuclear lamin in developmentally regulated nuclear migrations of photoreceptor cells in the Drosophila eye. Mol Biol Cell 15: 600–610.
[38]
Kracklauer MP, Banks SM, Xie X, Wu Y, Fischer JA (2007) Drosophila klaroid encodes a SUN domain protein required for Klarsicht localization to the nuclear envelope and nuclear migration in the eye. Fly (Austin) 1: 75–85.
[39]
Tsujikawa M, Omori Y, Biyanwila J, Malicki J (2007) Mechanism of positioning the cell nucleus in vertebrate photoreceptors. Proc Natl Acad Sci U S A 104: 14819–14824.
[40]
Kozlov S, Mounkes L, Cutler D, Sullivan T, Hernandez L, et al.. (2005) Mutations in the mouse Lmna gene causing progeria, muscular dystrophy and cardiomyopathy. Novartis Found Symp 264: 246–258; discussion 258–263.
[41]
Coffinier C, Chang SY, Nobumori C, Tu Y, Farber EA, et al. (2010) Abnormal development of the cerebral cortex and cerebellum in the setting of lamin B2 deficiency. Proc Natl Acad Sci U S A 107: 5076–5081.
[42]
Coffinier C, Jung HJ, Nobumori C, Chang S, Tu Y, et al. (2011) Deficiencies in lamin B1 and lamin B2 cause neurodevelopmental defects and distinct nuclear shape abnormalities in neurons. Mol Biol Cell 22: 4683–4693.
[43]
Zhou K, Rolls MM, Hall DH, Malone CJ, Hanna-Rose W (2009) A ZYG-12-dynein interaction at the nuclear envelope defines cytoskeletal architecture in the C.elegans gonad. J Cell Biol 186: 229–241.
[44]
Whited JL, Cassell A, Brouillette M, Garrity PA (2004) Dynactin is required to maintain nuclear position within postmitotic Drosophila photoreceptor neurons. Development 131: 4677–4686.
[45]
Fan SS, Ready DF (1997) Glued participates in distinct microtubule-based activities in Drosophila eye development. Development 124: 1497–1507.
[46]
Kosodo Y, Suetsugu T, Suda M, Mimori-Kiyosue Y, Toida K, et al. (2011) Regulation of interkinetic nuclear migration by cell cycle-coupled active and passive mechanisms in the developing brain. EMBO J 30: 1690–1704.
[47]
Leung L, Klopper AV, Grill SW, Harris WA, Norden C (2011) Apical migration of nuclei during G2 is a prerequisite for all nuclear motion in zebrafish neuroepithelia. Development 138: 5003–5013.
[48]
Gros-Louis F, Dupre N, Dion P, Fox MA, Laurent S, et al. (2007) Mutations in SYNE1 lead to a newly discovered form of autosomal recessive cerebellar ataxia. Nat Genet 39: 80–85.
[49]
Dupre N, Gros-Louis F, Chrestian N, Verreault S, Brunet D, et al. (2007) Clinical and genetic study of autosomal recessive cerebellar ataxia type 1. Ann Neurol 62: 93–98.
[50]
Xiong H, Rivero F, Euteneuer U, Mondal S, Mana-Capelli S, et al. (2008) Dictyostelium Sun-1 connects the centrosome to chromatin and ensures genome stability. Traffic 9: 708–724.
[51]
Khatau SB, Hale CM, Stewart-Hutchinson PJ, Patel MS, Stewart CL, et al. (2009) A perinuclear actin cap regulates nuclear shape. Proc Natl Acad Sci U S A 106: 19017–19022.
[52]
Olins AL, Hoang TV, Zwerger M, Herrmann H, Zentgraf H, et al. (2009) The LINC-less granulocyte nucleus. Eur J Cell Biol 88: 203–214.
[53]
Hale CM, Shrestha AL, Khatau SB, Stewart-Hutchinson PJ, Hernandez L, et al. (2008) Dysfunctional connections between the nucleus and the actin and microtubule networks in laminopathic models. Biophys J 95: 5462–5475.
[54]
Chang B, Grau T, Dangel S, Hurd R, Jurklies B, et al. (2009) A homologous genetic basis of the murine cpfl1 mutant and human achromatopsia linked to mutations in the PDE6C gene. Proc Natl Acad Sci U S A 106: 19581–19586.
[55]
Kolandaivelu S, Chang B, Ramamurthy V (2011) Rod phosphodiesterase-6 (PDE6) catalytic subunits restore cone function in a mouse model lacking cone PDE6 catalytic subunit. J Biol Chem 286: 33252–33259.
[56]
Michalakis S, Geiger H, Haverkamp S, Hofmann F, Gerstner A, et al. (2005) Impaired opsin targeting and cone photoreceptor migration in the retina of mice lacking the cyclic nucleotide-gated channel CNGA3. Invest Ophthalmol Vis Sci 46: 1516–1524.
[57]
Rajgor D, Mellad JA, Autore F, Zhang Q, Shanahan CM (2012) Multiple novel nesprin-1 and nesprin-2 variants act as versatile tissue-specific intracellular scaffolds. PLoS One 7: e40098.
[58]
Gartner S, Henkind P (1981) Aging and degeneration of the human macula. 1. Outer nuclear layer and photoreceptors. Br J Ophthalmol 65: 23–28.
[59]
Pow DV, Sullivan RK (2007) Nuclear kinesis, neurite sprouting and abnormal axonal projections of cone photoreceptors in the aged and AMD-afflicted human retina. Exp Eye Res 84: 850–857.
[60]
Lai YL, Masuda K, Mangum MD, Lug R, Macrae DW, et al. (1982) Subretinal displacement of photoreceptor nuclei in human retina. Exp Eye Res 34: 219–228.