全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

Effects of Nano-Titanium Dioxide on Freshwater Algal Population Dynamics

DOI: 10.1371/journal.pone.0047130

Full-Text   Cite this paper   Add to My Lib

Abstract:

To make predictions about the possible effects of nanomaterials across environments and taxa, toxicity testing must incorporate not only a variety of organisms and endpoints, but also an understanding of the mechanisms that underlie nanoparticle toxicity. Here, we report the results of a laboratory experiment in which we examined how titanium dioxide nanoparticles impact the population dynamics and production of biomass across a range of freshwater algae. We exposed 10 of the most common species of North American freshwater pelagic algae (phytoplankton) to five increasing concentrations of n-TiO2 (ranging from controls to 300 mg n-TiO2 L?1). We then examined the effects of n-TiO2 on the population growth rates and biomass production of each algal species over a period of 25 days. On average, increasing concentrations of n-TiO2 had no significant effects on algal growth rates (p = 0.376), even though there was considerable species-specific variation in responses. In contrast, exposure to n-TiO2 tended to increase maximum biomass achieved by species in culture (p = 0.06). Results suggest that titanium dioxide nanoparticles could influence certain aspects of population growth of freshwater phytoplankton, though effects are unlikely at environmentally relevant concentrations.

References

[1]  Rejeski D (2010) The Project on Emerging Nanotechnologies. Accessed on 1/20/2010: Available: http://www.nanotechproject.org/.
[2]  Kreyling WG, Semmler-Behnke M, Moller W (2006) Health implications of nanoparticles. Journal of Nanoparticle Research 8(5): 543–562.
[3]  Robichaud CO, Uyar AE, Darby MR, Zucker LG, Wiesner MR (2009) Estimates of upper bounds and trends in nano-TiO2 production as a basis for exposure assessment. Environ Sci Technol 43(12): 4227–4233.
[4]  Aitken RJ, Chaudhry MQ, Boxall ABA, Hull M (2006) Manufacture and use of nanomaterials: current status in the UK and global trends. Occup Med-Oxf 56(5): 300–306.
[5]  Kahru A, Dubourguier H-C (2010) From ecotoxicology to nanoecotoxicology. Toxicology 269: 105–119.
[6]  Menard A, Drobne D, Jemec A (2011) Ecotoxicity of nanosized TiO2. Review of in vivo data. Environ Pollut 159(3): 677–684.
[7]  Velzeboer I, Hendriks AJ, Ragas AM, van de Meent D (2008) Aquatic ecotoxicity tests of some nanomaterials. Environ Toxicol Chem 27(8): 1942–1947.
[8]  Hartmann NB, Von der Kammer F, Hofmann T, Baalousha M, Ottofuelling S, et al. (2010) Algal testing of titanium dioxide nanoparticles - Testing considerations, inhibitory effects and modification of cadmium bioavailability. Toxicology 269: 190–197.
[9]  Hund-Rinke K, Simon M (2006) Ecotoxic effect of photocatalytic active nanoparticles TiO2 on algae and daphnids. Environmental Science and Pollution Research 13(4): 225–232.
[10]  Wang JX, Zhang XZ, Chen YS, Sommerfeld M, Hu Q (2008) Toxicity assessment of manufactured nanomaterials using the unicellular green alga Chlamydomonas reinhardtii. Chemosphere 73(7): 1121–1128.
[11]  Sadiq IM, Dalai S, Chandrasekaran N, Mukherjee A (2011) Ecotoxicity study of titania (TiO(2)) NPs on two microalgae species: Scenedesmus sp. and Chlorella sp. Ecotoxicol Environ Saf 74(5): 1180–1187.
[12]  Cherchi C, Gu AZ (2010) Impact of titanium dioxide nanomaterials on nitrogen fixation rate and intracellular nitrogen storage in Anabaena variabilis. Environ Sci Technol 44(21): 8302–8307.
[13]  U. S. Environmental Protection Agency (2010) 2007 National Lakes Assessment. Data available at: http://water.epa.gov/type/lakes/NLA_data?.cfm.
[14]  Wehr JD, Sheath RG (2003) Freshwater Algae of North America. Amsterdam: Academic Press.
[15]  Hall S, Bradley T, Moore JT, Kuykindall T, Minella L (2009) Acute and chronic toxicity of nano-scale TiO2 particles to freshwater fish, cladocerans, and green algae, and effects of organic and inorganic substrate on TiO2 toxicity. Nanotoxicology 3(2): 91–97.
[16]  Warheit DB, Hoke RA, Finlay C, Donner EM, Reed KL, et al. (2007) Development of a base set of toxicity tests using ultrafine TiO2 particles as a component of nanoparticle risk management. Toxicol Lett 171(3): 99–110.
[17]  Aruoja V, Dubourguier HC, Kasemets K, Kahru A (2009) Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. Sci Total Environ 407(4): 1461–1468.
[18]  Hendriks JA, Maas-Diepeveen JLM, Heugens EHW, Van Straalenz NM (2005) Meta-analysis of intrinsic rates of increase and carrying capacity of populations affected by toxic and other stressors. Environ Toxicol Chem 24: 2267–2277.
[19]  Carpenter SR, Bolgrien D, Lathrop RC, Stow CA, Reed T, et al. (1998) Ecological and economic analysis of lake eutrophication by nonpoint pollution. Aust J Ecol 23: 68–79.
[20]  Sellner KG, Doucette GJ, Kirkpatrick GJ (2003) Harmful algal blooms: causes, impacts and detection. J Ind Microbiol Biotechnol 30(7): 383–406.
[21]  Dodds WK, Bouska WW, Eitzmann JL, Pilger TJ, Pitts KL, et al. (2009) Eutrophication of US freshwaters: Analysis of potential economic damages. Environ Sci Technol 43: 12–19.
[22]  Watanabe MM (2005) Freshwater culture media. In: Andersen RA, editor. Algal Culturing Techniques. New York: Academic Press. 13–20.
[23]  Keller AA, Wang H, Zhou D, Lenihan HS, Cherr G, et al. (2010) Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices. Environ Sci Technol 44: 1962–1967.
[24]  Cottingham KL, Lennon JT, Brown BL (2005) Knowing when to draw the line: designing more informative ecological experiments. Frontiers in Ecology and the Environment 3: 145–152.
[25]  Som C, Wick P, Krug H, Nowack B (2011) Environmental and health effects of nanomaterials in nanotextiles and facade coatings. Environ Int 37: 1131–1142.
[26]  Degussa Corp (1994) Titanium dioxide P-25; MSDS No. BWRPJ. Ridgefield, NJ: January 20, 1994.
[27]  Metzler DM, Li MH, Erdem A, Huang CP (2011) Responses of algae to photocatalytic nano-TiO(2) particles with an emphasis on the effect of particle size. Chem Eng J 170(2–3): 538–546.
[28]  Huang ZB, Zheng X, Yan DH, Yin GF, Liao XM, et al. (2008) Toxicological effect of ZnO nanoparticles based on bacteria. Langmuir 24(8): 4140–4144.
[29]  Mileyeva-Biebesheimer ON, Zaky A, Gruden CL (2010) Assessing the impact of titanium dioxide and zinc oxide nanoparticles on bacteria using a fluorescent-based cell membrane integrity assay. Environ Eng Sci 27(4): 329–335.
[30]  Kim SC, Lee DK (2005) Preparation of TiO2-coated hollow glass beads and their application to the control of algal growth in eutrophic water. Microchem J 80(2): 227–232.
[31]  Bertilsson S, Tranvik LJ (1998) Photochemically produced carboxylic acids as substrates for freshwater bacterioplankton. Limnol Oceanogr 43: 885–895.
[32]  Scully NM, Cooper WJ, Tranvik LJ (2003) Photochemical effects on microbial activity in natural waters: the interaction of reactive oxygen species and dissolved organic matter. FEMS Microbiol Ecol 46: 353–357.
[33]  Steele JH (1962) Environmental control of photosynthesis in the sea. Limnol Oceanogr 7(2): 137–150.
[34]  Jorgensen EG (1969) Adaptation of plankton alga. 4. Light adaptation in different algal species. Physiol Plant 22(6): 1307–1315.
[35]  Lewis MA (2003) Algae and Vascular Plant Tests. In: Rand GM, editor. Fundamentals of Aquatic Toxicology. 2 ed. London: Taylor & Francis. 135–170.
[36]  Handy RD, Cornelis G, Fernandes T, Tsyusko O, Decho A, et al. (2012) Ecotoxicity test methods for engineered nanomaterials: Practical experiences and recommendations from the bench. Environ Toxicol Chem 31(1): 15–31.
[37]  Kaegi R, Ulrich A, Sinnet B, Vonbank R, Wichser A, et al. (2008) Synthetic TiO2 nanoparticle emission from exterior facades into the aquatic environment. Environ Pollut 156(2): 233–239.
[38]  Mueller NC, Nowack B (2008) Exposure modeling of engineered nanoparticles in the environment. Environ Sci Technol 42(12): 4447–4453.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133