全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

Time of Progression to Osteopenia/Osteoporosis in Chronically HIV-Infected Patients: Screening DXA Scan

DOI: 10.1371/journal.pone.0046031

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background Algorithms for bone mineral density (BMD) management in HIV-infected patients are lacking. Our objective was to assess how often a dual-energy x-ray absorptiometry (DXA) scan should be performed by assessing time of progression to osteopenia/osteoporosis. Methods All DXA scans performed between 2000 and 2009 from HIV-infected patients with at least two DXA were included. Time to an event (osteopenia and osteoporosis) was assessed using the Kaplan–Meier method. Strata (tertiles) were defined using baseline minimum T scores. Differences between strata in time to an event were compared with the log-rank test. Results Of 391 patients (1,639 DXAs), 49.6% had osteopenia and 21.7% osteoporosis at their first DXA scan. Of the 112 (28.6%) with normal BMD, 35.7% progressed to osteopenia; median progression time was 6.7 years. These patients were stratified: “low-risk" (baseline minimum T score >?0.2 SD), “middle-risk" (between ?0.2 and ?0.6 SD), and “high-risk" (from ?0.6 to ?1 SD); median progression time to osteopenia was 8.7, >7.2, and 1.7 years, respectively (p<0.0001). Of patients with osteopenia, 23.7% progressed to osteoporosis; median progression time was >8.5 years. Progression time was >8.2 years in “low-risk" tertile (T score between ?1.1 and ?1.6 SD), >8.5 years in “middle-risk" (between ?1.6 and ?2), and 3.2 years in “high-risk" (from ?2 to ?2.4) (p<0.0001). Conclusions Our results may help to define the BMD testing interval. The lowest T score tertiles would suggest recommending a subsequent DXA in 1–2 years; in the highest tertiles, ≥6 years. Early intervention in patients with bone demineralization could reduce fracture–related morbidity/mortality.

References

[1]  NIH Consensus Development Panel on Osteoporosis Prevention D, and Therapy, Conference CD (2001) Osteoporosis prevention, diagnosis, and therapy. JAMA 285: 785–795.
[2]  Bonjoch A, Figueras M, Estany C, Perez-Alvarez N, Rosales J, et al. (2010) High prevalence of and progression to low bone mineral density in HIV-infected patients: a longitudinal cohort study. AIDS 24: 2827–2833.
[3]  Brown TT, Qaqish RB (2006) Antiretroviral therapy and the prevalence of osteopenia and osteoporosis: a meta-analytic review. AIDS 20: 2165–2174.
[4]  Bruera D, Luna N, David DO, Bergoglio LM, Zamudio J (2003) Decreased bone mineral density in HIV-infected patients is independent of antiretroviral therapy. AIDS 17: 1917–1923.
[5]  Knobel H, Guelar A, Vallecillo G, Nogues X, Diez A (2001) Osteopenia in HIV-infected patients: is it the disease or is it the treatment? AIDS 15: 807–808.
[6]  Cotter EJ, Malizia AP, Chew N, Powderly WG, Doran PP (2007) HIV proteins regulate bone marker secretion and transcription factor activity in cultured human osteoblasts with consequent potential implications for osteoblast function and development. AIDS Res Hum Retroviruses 23: 1521–1530.
[7]  Fakruddin JM, Laurence J (2003) HIV envelope gp120-mediated regulation of osteoclastogenesis via receptor activator of nuclear factor kappa B ligand (RANKL) secretion and its modulation by certain HIV protease inhibitors through interferon-gamma/RANKL cross-talk. J Biol Chem 278: 48251–48258.
[8]  Gibellini D, De Crignis E, Ponti C, Borderi M, Clo A, et al. (2010) HIV-1 Tat protein enhances RANKL/M-CSF-mediated osteoclast differentiation. Biochem Biophys Res Commun 401: 429–434.
[9]  Gibellini D, De Crignis E, Ponti C, Cimatti L, Borderi M, et al. (2008) HIV-1 triggers apoptosis in primary osteoblasts and HOBIT cells through TNFalpha activation. J Med Virol 80: 1507–1514.
[10]  Grijsen ML, Vrouenraets SM, Steingrover R, Lips P, Reiss P, et al. (2010) High prevalence of reduced bone mineral density in primary HIV-1-infected men. AIDS 24: 2233–2238.
[11]  Gutierrez F, Masia M (2011) The role of HIV and antiretroviral therapy in bone disease. AIDS Rev 13: 109–118.
[12]  Hoy J (2011) Bone, fracture and frailty. Curr Opin HIV AIDS 6: 309–314.
[13]  Ofotokun I, Weitzmann MN (2010) HIV-1 infection and antiretroviral therapies: risk factors for osteoporosis and bone fracture. Curr Opin Endocrinol Diabetes Obes 17: 523–529.
[14]  Ofotokun I, Weitzmann MN (2011) HIV and bone metabolism. Discov Med 11: 385–393.
[15]  Wei S, Kitaura H, Zhou P, Ross FP, Teitelbaum SL (2005) IL-1 mediates TNF-induced osteoclastogenesis. J Clin Invest 115: 282–290.
[16]  Gallant JE, Staszewski S, Pozniak AL, DeJesus E, Suleiman JM, et al. (2004) Efficacy and safety of tenofovir DF vs stavudine in combination therapy in antiretroviral-naive patients: a 3-year randomized trial. JAMA 292: 191–201.
[17]  Gibellini D, Borderi M, de Crignis E, Clo A, Miserocchi A, et al. (2010) Analysis of the effects of specific protease inhibitors on OPG/RANKL regulation in an osteoblast-like cell line. New Microbiol 33: 109–115.
[18]  McComsey GA, Kitch D, Daar ES, Tierney C, Jahed NC, et al. (2011) Bone mineral density and fractures in antiretroviral-naive persons randomized to receive abacavir-lamivudine or tenofovir disoproxil fumarate-emtricitabine along with efavirenz or atazanavir-ritonavir: Aids Clinical Trials Group A5224s, a substudy of ACTG A5202. J Infect Dis 203: 1791–1801.
[19]  Ofotokun I WN, Vunnava A, Sheth A, Villinger F, Zhou J, Williams E, Sanford S, Rivas M, Lennox J, (2011) HAART-induced Immune Reconstitution: A Driving Force Behind Bone Resorption in HIV/AIDS CROI 2011.
[20]  Yong MK, Elliott JH, Woolley IJ, Hoy JF (2011) Low CD4 Count Is Associated With an Increased Risk of Fragility Fracture in HIV-Infected Patients. J Acquir Immune Defic Syndr 57: 205–210.
[21]  Dao CN, Patel P, Overton ET, Rhame F, Pals SL, et al. (2011) Low vitamin D among HIV-infected adults: prevalence of and risk factors for low vitamin D Levels in a cohort of HIV-infected adults and comparison to prevalence among adults in the US general population. Clin Infect Dis 52: 396–405.
[22]  Arnsten JH, Freeman R, Howard AA, Floris-Moore M, Santoro N, et al. (2006) HIV infection and bone mineral density in middle-aged women. Clin Infect Dis 42: 1014–1020.
[23]  Bedimo R ZS, Drechsler H, Tebas P, Maalouf N (2011) Risk of Osteoporotic Fractures Associated with Cumulative Exposure to Tenofovir and Other Antiretroviral Agents. 6th IAS Conference on HIV Pathogenesis, Treatment and Prevention, July 17–20, 2011, Rome.
[24]  Triant VA, Brown TT, Lee H, Grinspoon SK (2008) Fracture prevalence among human immunodeficiency virus (HIV)-infected versus non-HIV-infected patients in a large U.S. healthcare system. J Clin Endocrinol Metab 93: 3499–3504.
[25]  Trombetti A, Herrmann F, Hoffmeyer P, Schurch MA, Bonjour JP, et al. (2002) Survival and potential years of life lost after hip fracture in men and age-matched women. Osteoporos Int 13: 731–737.
[26]  Aberg JA, Kaplan JE, Libman H, Emmanuel P, Anderson JR, et al. (2009) Primary care guidelines for the management of persons infected with human immunodeficiency virus: 2009 update by the HIV medicine Association of the Infectious Diseases Society of America. Clin Infect Dis 49: 651–681.
[27]  Watts NB, Lewiecki EM, Miller PD, Baim S (2008) National Osteoporosis Foundation 2008 Clinician's Guide to Prevention and Treatment of Osteoporosis and the World Health Organization Fracture Risk Assessment Tool (FRAX): what they mean to the bone densitometrist and bone technologist. J Clin Densitom 11: 473–477.
[28]  Kanis JA (1994) Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: synopsis of a WHO report. WHO Study Group. Osteoporos Int 4: 368–381.
[29]  Marubini EV, MG editor (2004) Analysing Survival Data from Clinical Trials and Observational Studies.
[30]  Cooper C (1997) The crippling consequences of fractures and their impact on quality of life. Am J Med 103: 12S–17S discussion 17S–19S.
[31]  McComsey GA, Tebas P, Shane E, Yin MT, Overton ET, et al. (2010) Bone disease in HIV infection: a practical review and recommendations for HIV care providers. Clin Infect Dis 51: 937–946.
[32]  Cazanave C (2010) Changes in Bone Mineral Density: 2-Years of follow up of the ANRS CO3 Aquitaine Cohort. CROI 2010.
[33]  Dolan SE, Kanter JR, Grinspoon S (2006) Longitudinal analysis of bone density in human immunodeficiency virus-infected women. J Clin Endocrinol Metab 91: 2938–2945.
[34]  Sharma (2010) Longitudinal Analysis of Bone Mineral Density in Aging Men with or at Risk for HIV Infection. CROI 2010.
[35]  Gourlay ML, Fine JP, Preisser JS, May RC, Li C, et al. (2012) Bone-density testing interval and transition to osteoporosis in older women. N Engl J Med 366: 225–233.
[36]  Kanis JA, Johnell O, Oden A, Dawson A, De Laet C, et al. (2001) Ten year probabilities of osteoporotic fractures according to BMD and diagnostic thresholds. Osteoporos Int 12: 989–995.
[37]  Gómez G, Calle M, Oller R, Langohr K (2009) Tutorial on methods for interval-censored data and their implementation in R. Statistical Modelling 9: 259–297.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133