[1] | Markow TA, Coppola A, Watts TD (2001) How Drosophila males make eggs: it is elemental. Proc Biol Sci 268: 1527–1532.
|
[2] | Swanson WJ, Clark AG, Waldrip-Dail HM, Wolfner MF, Aquadro CF (2001) Evolutionary EST analysis identifies rapidly evolving male reproductive proteins in Drosophila. Proc Natl Acad Sci U S A 98: 7375–7379.
|
[3] | Gillott C (2003) Male accessory gland secretions: modulators of female reproductive physiology and behavior. Annu Rev Entomol 48: 163–184.
|
[4] | Braswell WE, Andrés JA, Maroja LS, Harrison RG, Howard DJ, et al. (2006) Identification and comparative analysis of accessory gland proteins in Orthoptera. Genome 49: 1069–1080.
|
[5] | Poiani A (2006) Complexity of seminal fluid: a review. Behav Ecol Sociobiol 60: 289–310.
|
[6] | Sirot LK, Poulson RL, McKenna MC, Girnary H, Wolfner MF, et al. (2008) Identity and transfer of male reproductive gland proteins of the dengue vector mosquito, Aedes aegypti: potential tools for control of female feeding and reproduction. Insect Biochem Mol Biol 38: 176–189.
|
[7] | Avila FW, Sirot LK, LaFlamme BA, Rubinstein CD, Wolfner MF (2011) Insect seminal fluid proteins: identification and function. Annu Rev Entomol 56: 21–40.
|
[8] | Wolfner MF, Applebaum S, Heifetz Y (2005) Insect gonadal glands and their gene products. In: Gilbert L, Iatrou K, Gill S, editors. Comprehensive Insect Physiology, Biochemistry, Pharmacology and Molecular Biology. Amsterdam: Elsevier. pp. 179–212.
|
[9] | Wolfner MF (2007) “S.P.E.R.M.” (seminal proteins (are) essential reproductive modulators): the view from Drosophila. Soc Reprod Fertil Suppl 65: 183–199.
|
[10] | Mueller JL, Ripoll DR, Aquadro CF, Wolfner MF (2004) Comparative structural modeling and inference of conserved protein classes in Drosophila seminal fluid. Proc Natl Acad Sci U S A 101: 13542–13547.
|
[11] | Kelleher ES, Watts TD, LaFlamme BA, Haynes PA, Markow TA (2009) Proteomic analysis of Drosophila mojavensis male accessory glands suggests novel classes of seminal fluid proteins. Insect Biochem Mol Biol 39: 366–371.
|
[12] | Parthasarathy R, Tan A, Sun Z, Chen Z, Rankin M, et al. (2009) Juvenile hormone regulation of male accessory gland activity in the red flour beetle, Tribolium castaneum. Mech Dev 126: 563–579.
|
[13] | South A, Sirot LK, Lewis SM (2011) Identification of predicted seminal fluid proteins in Tribolium castaneum. Insect Mol Biol 20: 447–456.
|
[14] | Walters JR, Harrison RG (2010) Combined EST and proteomic analysis identifies rapidly evolving seminal fluid proteins in Heliconius butterflies. Mol Biol Evol 27: 2000–2013.
|
[15] | Baer B, Heazlewood JL, Taylor NL, Eubel H, Millar AH (2009) The seminal fluid proteome of the honeybee Apis mellifera. Proteomics 9: 2085–2097.
|
[16] | Oppelt A, Humann FC, Fuessl M, Azevedo SV, Marco Antonio DS, et al. (2010) Suppression subtractive hybridization analysis reveals expression of conserved and novel genes in male accessory glands of the ant Leptothorax gredleri. BMC Evol Biol 10: 273.
|
[17] | Azevedo RV, Dias DB, Bret?s JA, Mazzoni CJ, Souza NA, et al. (2012) The transcriptome of Lutzomyia longipalpis (Diptera: Psychodidae) male reproductive organs. PLoS One 7: e34495.
|
[18] | Sirot LK, Hardstone MC, Helinski ME, Ribeiro JM, Kimura M, et al. (2011) Towards a semen proteome of the dengue vector mosquito: protein identification and potential functions. PLoS Negl Trop Dis 5: e989.
|
[19] | Dottorini T, Nicolaides L, Ranson H, Rogers DW, Crisanti A, et al. (2007) A genome-wide analysis in Anopheles gambiae mosquitoes reveals 46 male accessory gland genes, possible modulators of female behavior. Proc Natl Acad Sci U S A 104: 16215–16220.
|
[20] | Kern AD, Jones CD, Begun DJ (2004) Molecular population genetics of male accessory gland proteins in the Drosophila simulans complex. Genetics 167: 725–735.
|
[21] | Harris EJ (1989) Pest status of fruit flies. In: Robinson AS, Hooper GH, editors. Fruit Flies: Their Biology, Natural Enemies and Control. Amsterdam: Elsevier. pp. 73–81.
|
[22] | Malacrida AR, Gomulski LM, Bonizzoni M, Bertin S, Gasperi G, et al. (2007) Globalization and fruitfly invasion and expansion: the medfly paradigm. Genetica 131: 1–9.
|
[23] | Gomulski LM, Dimopoulos G, Xi Z, Soares MB, Bonaldo MF, et al. (2008) Gene discovery in an invasive tephritid model pest species, the Mediterranean fruit fly, Ceratitis capitata. BMC Genomics 9: 243.
|
[24] | Carey JR, Vaupel JW (2003) Biodemography. In: Delamater J, editor. Handbook of the Social Phycology. New York: Kluwer Academic/Plenum Publisher. pp. 625–658.
|
[25] | Papadopoulos NT, Liedo P, Müller HG, Wang JL, Molleman F, et al. (2010) Cost of reproduction in male medflies: the primacy of sexual courting in extreme longevity reduction. J Insect Physiol 56: 283–287.
|
[26] | Theodoraki M, Tatari M, Chrysanthis G, Zacharopoulou A, Mintzas AC (2008) Structural characterization of the medfly hsp83 gene and functional analysis of its proximal promoter region in vivo by germ-line transformation. Arch Insect Biochem Physiol 67: 20–35.
|
[27] | Gabrieli P, Falaguerra A, Siciliano P, Gomulski LM, Scolari F, et al. (2010) Sex and the single embryo: early deveiopment in the Mediterranean fruit fly, Ceratitis capitata. BMC Dev Biol 10: 12.
|
[28] | Gomulski LM, Dimopoulos G, Xi Z, Scolari F, Gabrieli P, et al. (2012) Transcriptome profiling of sexual maturation and mating in the Mediterranean fruit fly, Ceratitis capitata. PLoS One 7: e30857.
|
[29] | Davies SJ, Chapman T (2006) Identification of genes expressed in the accessory glands of male Mediterranean Fruit Flies (Ceratitis capitata). Insect Biochem Mol Biol 36: 846–856.
|
[30] | Cavalloro R, Delrio G (1970) Studi sulla radiosterilizzazione di Ceratitis capitata Wiedemann e sul comportamento dell'insetto normale e sterile. Redia LII: 511–547.
|
[31] | Delrio G, Cavalloro R (1979) Influenza dell'accoppiamento sulla recettività sessuale e sull'ovideposizione in femmine di Ceratitis capitata Wiedemann. Entomologica XV: 127–143.
|
[32] | Miyatake T, Chapman T, Partridge L (1999) Mating-induced inhibition of remating in female Mediterranean fruit flies Ceratitis capitata. J Insect Physiol 45: 1021–1028.
|
[33] | Jang EB (1995) Effects of mating and accessory-gland injections on olfactory-mediated behavior in the female Mediterranean fruit-fly, Ceratitis capitata. J Ins Physiol 41: 705–710.
|
[34] | Moshitzky P, Gilbert LI, Applebaum SW (2003) Biosynthetic maturation of the corpus allatum of the female adult medfly, Ceratitis capitata, and its putative control. J Insect Physiol 49: 603–609.
|
[35] | Chen PS, Stumm-Zollinger E, Aigaki T, Balmer J, Bienz M, et al. (1988) A male accessory gland peptide that regulates reproductive behavior of female D. melanogaster. Cell 54: 291–298.
|
[36] | Swanson WJ (2003) Sex peptide and the sperm effect in Drosophila melanogaster. Proc Natl Acad Sci U S A 100: 9643–9644.
|
[37] | Liu H, Kubli E (2003) Sex-peptide is the molecular basis of the sperm effect in Drosophila melanogaster. Proc Natl Acad Sci U S A 100: 9929–9933.
|
[38] | Marchini D, Del Bene G, Cappelli L, Dallai R (2003) Ultrastructure of the male reproductive accessory glands in the medfly Ceratitis capitata (Diptera: Tephritidae) and preliminary characterization of their secretions. Arthropod Struct Dev 31: 313–327.
|
[39] | Mueller JL, Ravi Ram K, McGraw LA, Bloch Qazi MC, Siggia ED, et al. (2005) Cross-species comparison of Drosophila male accessory gland protein genes. Genetics 171: 131–143.
|
[40] | Begun DJ, Lindfors HA, Thompson ME, Holloway AK (2006) Recently evolved genes identified from Drosophila yakuba and D. erecta accessory gland expressed sequence tags. Genetics 172: 1675–1681.
|
[41] | Levine MT, Jones CD, Kern AD, Lindfors HA, Begun DJ (2006) Novel genes derived from noncoding DNA in Drosophila melanogaster are frequently X-linked and exhibit testis-biased expression. Proc Natl Acad Sci U S A 103: 9935–9939.
|
[42] | Schully SD, Hellberg ME (2006) Positive selection on nucleotide substitutions and indels in accessory gland proteins of the Drosophila pseudoobscura subgroup. J Mol Evol 62: 793–802.
|
[43] | Andrés JA, Maroja LS, Harrison RG (2008) Searching for candidate speciation genes using a proteomic approach: seminal proteins in field crickets. Proc Biol Sci 275: 1975–1983.
|
[44] | Andrés JA, Arnqvist G (2001) Genetic divergence of the seminal signal-receptor system in houseflies: the footprints of sexually antagonistic coevolution? Proc Biol Sci 268: 399–405.
|
[45] | Coyne JA, Orr HA (2004) Speciation. Sunderland, MA: Sinauer Associates.
|
[46] | Fricke C, Arnqvist G, Amaro N (2006) Female modulation of reproductive rate and its role in postmating prezygotic isolation in Callosobruchus maculatus. Funct Ecol 20: 360–368.
|
[47] | Andrews J, Bouffard GG, Cheadle C, Lü J, Becker KG, et al. (2000) Gene discovery using computational and microarray analysis of transcription in the Drosophila melanogaster testis. Genome Res 10: 2030–2043.
|
[48] | Parisi M, Nuttall R, Naiman D, Bouffard G, Malley J, et al. (2003) Paucity of genes on the Drosophila X chromosome showing male-biased expression. Science 299: 697–700.
|
[49] | Ranz JM, Castillo-Davis CI, Meiklejohn CD, Hartl DL (2003) Sex-dependent gene expression and evolution of the Drosophila transcriptome. Science 300: 1742–1745.
|
[50] | Mikhaylova LM, Nguyen K, Nurminsky DI (2008) Analysis of the Drosophila melanogaster testes transcriptome reveals coordinate regulation of paralogous genes. Genetics 179: 305–315.
|
[51] | Arunkumar KP, Mita K, Nagaraju J (2009) The silkworm Z chromosome is enriched in testis-specific genes. Genetics 182: 493–501.
|
[52] | Krzywinska E, Krzywinski J (2009) Analysis of expression in the Anopheles gambiae developing testes reveals rapidly evolving lineage-specific genes in mosquitoes. BMC Genomics 10: 300.
|
[53] | Scolari F, Schetelig MF, Bertin S, Malacrida AR, Gasperi G, et al. (2008) Fluorescent sperm marking to improve the fight against the pest insect Ceratitis capitata (Wiedemann; Diptera: Tephritidae). N Biotechnol 25: 76–84.
|
[54] | Pasini ME, Intra J, Gomulski LM, Calvenzani V, Petroni K, et al. (2011) Identification and expression profiling of Ceratitis capitata genes coding for β-hexosaminidases. Gene 473: 44–56.
|
[55] | Intra J, De Caro D, Perotti ME, Pasini ME (2011) Glycosidases in the plasma membrane of Ceratitis capitata spermatozoa. Insect Biochem Mol Biol 41: 90–100.
|
[56] | Báo SN, Quagio-Grassiotto I, Dolder H (1989) Acrosome formation in Ceratitis capitata (Diptera, Tephritidae). Cytobios 58: 93–100.
|
[57] | Saul SH (1982) Rosy-like mutant of the Mediterranean fruit fly, Ceratitis capitata (Diptera: Tephritidae), and its potential for use in a genetic sexing program. Ann Entomol Soc Am 75: 480–483.
|
[58] | Bonaldo MF, Lennon G, Soares MB (1996) Normalization and subtraction: two approaches to facilitate gene discovery. Genome Res 6: 791–806.
|
[59] | Ewing B, Hillier L, Wendl MC, Green P (1998) Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res 8: 175–185.
|
[60] | Guo Y, Ribeiro JM, Anderson JM, Bour S (2009) dCAS: a desktop application for cDNA sequence annotation. Bioinformatics 25: 1195–1196.
|
[61] | Ribeiro JM, Labruna MB, Mans BJ, Maruyama SR, Francischetti IM, et al. (2012) The sialotranscriptome of Antricola delacruzi female ticks is compatible with non-hematophagous behavior and an alternative source of food. Insect Biochem Mol Biol 42: 332–342.
|
[62] | Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215: 403–410.
|
[63] | Kumar S, Tamura K, Nei M (2004) MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief Bioinform 5: 150–163.
|
[64] | Altschul SF, Madden TL, Sch?ffer AA, Zhang J, Zhang Z, et al. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25: 3389–3402.
|
[65] | Bateman A, Birney E, Durbin R, Eddy SR, Howe KL, et al. (2000) The Pfam protein families database. Nucleic Acids Res 28: 263–266.
|
[66] | Schultz J, Milpetz F, Bork P, Ponting CP (1998) SMART, a simple modular architecture research tool: identification of signaling domains. Proc Natl Acad Sci U S A 95: 5857–5864.
|
[67] | Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B, et al. (2003) The COG database: an updated version includes eukaryotes. BMC Bioinformatics 4: 41.
|
[68] | Marchler-Bauer A, Anderson JB, DeWeese-Scott C, Fedorova ND, Geer LY, et al. (2003) CDD: a curated Entrez database of conserved domain alignments. Nucleic Acids Res 31: 383–387.
|
[69] | Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, et al. (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25: 25–29.
|
[70] | Pearson WR, Wood T, Zhang Z, Miller W (1997) Comparison of DNA sequences with protein sequences. Genomics 46: 24–36.
|
[71] | Nielsen H, Engelbrecht J, Brunak S, von Heijne G (1997) Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng 10: 1–6.
|
[72] | Emanuelsson O, Nielsen H, Brunak S, von Heijne G (2000) Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol 300: 1005–1016.
|
[73] | M?ller S, Croning MD, Apweiler R (2001) Evaluation of methods for the prediction of membrane spanning regions. Bioinformatics 17: 646–653.
|
[74] | Hansen JE, Lund O, Tolstrup N, Gooley AA, Williams KL, et al. (1998) NetOglyc: prediction of mucin type O-glycosylation sites based on sequence context and surface accessibility. Glycoconj J 15: 115–130.
|
[75] | Conesa A, Gotz S, Garcia-Gomez J, Terol J, Talon M, et al. (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21: 3674–3676.
|
[76] | Chintapalli VR, Wang J, Dow JA (2007) Using FlyAtlas to identify better Drosophila melanogaster models of human disease. Nat Genet 39: 715–720.
|
[77] | Taylor PW, Yuval B (1999) Postcopulatory sexual selection in Mediterranean fruit flies: advantages for large and protein-fed males. Anim Behav 58: 247–254.
|
[78] | Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, et al. (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3: RESEARCH0034.
|
[79] | Scharlaken B, de Graaf DC, Goossens K, Brunain M, Peelman LJ, et al. (2008) Reference gene selection for insect expression studies using quantitative real-time PCR: The head of the honeybee, Apis mellifera, after a bacterial challenge. J Insect Sci 8: 33.
|
[80] | Wolberg J (2005) Data Analysis Using the Method of LeastSquares: Extracting the Most Information from Experiments. Berlin Heidelberg New York Springer Verlag
|
[81] | Team RDC (2011) R: A language and environment for statistical computing. Vienna, Austria:R Foundation for Statistical Computing.
|
[82] | Bonilla E, Xu EY (2008) Identification and characterization of novel mammalian spermatogenic genes conserved from fly to human. Mol Hum Reprod 14: 137–142.
|
[83] | White-Cooper H, Doggett K, Ellis R (2009) The evolution of spermatogenesis. In: Birkhead TR, Hosken DJ, Pitnick SS, editors. Sperm biology: an evolutionary perspective. New York: Academic Press. pp. 151–183.
|
[84] | Ravi Ram K, Wolfner MF (2007) Sustained post-mating response in Drosophila melanogaster requires multiple seminal fluid proteins. PLoS Genet 3: e238.
|
[85] | Wong A, Turchin M, Wolfner MF, Aquadro CF (2012) Temporally variable selection on proteolysis-related reproductive tract proteins in Drosophila. Mol Biol Evol 29: 229–238.
|
[86] | Panhuis TM, Clark NL, Swanson WJ (2006) Rapid evolution of reproductive proteins in abalone and Drosophila. Philos Trans R Soc Lond B Biol Sci 361: 261–268.
|
[87] | Clark NL, Aagaard JE, Swanson WJ (2006) Evolution of reproductive proteins from animals and plants. Reproduction 131: 11–22.
|
[88] | Chapman T (2008) The soup in my fly: evolution, form and function of seminal fluid proteins. PLoS Biol 6: e179.
|
[89] | Swanson WJ, Vacquier VD (2002) The rapid evolution of reproductive proteins. Nat Rev Genet 3: 137–144.
|
[90] | Civetta A (2003) Positive selection within sperm-egg adhesion domains of fertilin: an ADAM gene with a potential role in fertilization. Mol Biol Evol 20: 21–29.
|
[91] | Haerty W, Jagadeeshan S, Kulathinal RJ, Wong A, Ravi Ram K, et al. (2007) Evolution in the fast lane: rapidly evolving sex-related genes in Drosophila. Genetics 177: 1321–1335.
|
[92] | Christophides GK, Mintzas AC, Komitopoulou K (2000) Organization, evolution and expression of a multigene family encoding putative members of the odourant binding protein family in the medfly Ceratitis capitata. Insect Mol Biol 9: 185–195.
|
[93] | Christophides GK, Livadaras I, Savakis C, Komitopoulou K (2000) Two medfly promoters that have originated by recent gene duplication drive distinct sex, tissue and temporal expression patterns. Genetics 156: 173–182.
|
[94] | Allen AK, Spradling AC (2008) The Sf1-related nuclear hormone receptor Hr39 regulates Drosophila female reproductive tract development and function. Development 135: 311–321.
|
[95] | Yamamoto MT, Takemori N (2010) Proteome profiling reveals tissue-specific protein expression in the male reproductive system of Drosophila melanogaster. Fly (Austin) 4: 36–39.
|
[96] | Zhou S, Stone EA, Mackay TF, Anholt RR (2009) Plasticity of the chemoreceptor repertoire in Drosophila melanogaster. PLoS Genet 5: e1000681.
|
[97] | Arya GH, Weber AL, Wang P, Magwire MM, Negron YL, et al. (2010) Natural variation, functional pleiotropy and transcriptional contexts of odorant binding protein genes in Drosophila melanogaster. Genetics 186: 1475–1485.
|
[98] | Hazelrigg T, Watkins WS, Marcey D, Tu C, Karow M, et al. (1990) The exuperantia gene is required for Drosophila spermatogenesis as well as anteroposterior polarity of the developing oocyte, and encodes overlapping sex-specific transcripts. Genetics 126: 607–617.
|
[99] | Hazelrigg T, Tu C (1994) Sex-specific processing of the Drosophila exuperantia transcript is regulated in male germ cells by the tra-2 gene. Proc Natl Acad Sci U S A 91: 10752–10756.
|
[100] | Laskowski M, Kato I (1980) Protein inhibitors of proteinases. Annu Rev Biochem 49: 593–626.
|
[101] | Lung O, Tram U, Finnerty CM, Eipper-Mains MA, Kalb JM, et al. (2002) The Drosophila melanogaster seminal fluid protein Acp62F is a protease inhibitor that is toxic upon ectopic expression. Genetics 160: 211–224.
|
[102] | Park M, Wolfner MF (1995) Male and female cooperate in the prohormone-like processing of a Drosophila melanogaster seminal fluid protein. Dev Biol 171: 694–702.
|
[103] | Monsma SA, Harada HA, Wolfner MF (1990) Synthesis of two Drosophila male accessory gland proteins and their fate after transfer to the female during mating. Dev Biol 142: 465–475.
|
[104] | Heifetz Y, Vandenberg LN, Cohn HI, Wolfner MF (2005) Two cleavage products of the Drosophila accessory gland protein ovulin can independently induce ovulation. Proc Natl Acad Sci U S A 102: 743–748.
|
[105] | Mueller JL, Linklater JR, Ravi Ram K, Chapman T, Wolfner MF (2008) Targeted gene deletion and phenotypic analysis of the Drosophila melanogaster seminal fluid protease inhibitor Acp62F. Genetics 178: 1605–1614.
|
[106] | Murer V, Spetz JF, Hengst U, Altrogge LM, de Agostini A, et al. (2001) Male fertility defects in mice lacking the serine protease inhibitor protease nexin-1. Proc Natl Acad Sci U S A 98: 3029–3033.
|
[107] | Stanfield GM, Villeneuve AM (2006) Regulation of sperm activation by SWM-1 is required for reproductive success of C. elegans males. Curr Biol 16: 252–263.
|
[108] | Smith JR, Stanfield GM (2011) TRY-5 is a sperm-activating protease in Caenorhabditis elegans seminal fluid. PLoS Genet 7: e1002375.
|
[109] | Walker MJ, Rylett CM, Keen JN, Audsley N, Sajid M, et al. (2006) Proteomic identification of Drosophila melanogaster male accessory gland proteins, including a pro-cathepsin and a soluble gamma-glutamyl transpeptidase. Proteome Sci 4: 9.
|
[110] | Reinhardt K, Naylor RA, Siva-Jothy MT (2009) Ejaculate components delay reproductive senescence while elevating female reproductive rate in an insect. Proc Natl Acad Sci U S A 106: 21743–21747.
|
[111] | Pilch B, Mann M (2006) Large-scale and high-confidence proteomic analysis of human seminal plasma. Genome Biol 7: R40.
|
[112] | Dapples CC, Foster WA, Lea AO (1974) Ultrastructure of the accessory gland of the male mosquito, Aedes aegypti (L.) (Diptera: Culicidae). Int J Insect Morphol Embryol 3: 279–291.
|
[113] | Ramalingam S (1983) Secretion in the male accessory-glands of Aedes aegypti (L.) (Diptera, Culicidae). Int J Insect Morphol Embryol 12: 87–96.
|
[114] | Jones JC, Wheeler RE (1965) Studies on spermathecal filling in Aedes aegypti (Linnaeus). I. Description. Biol Bull 129: 134–150.
|
[115] | Marchini D, Del Bene G (2006) Comparative fine structural analysis of the male reproductive accessory glands in Bactrocera oleae and Ceratitis capitata (Diptera, Tephritidae). Ital J Zool 73: 15–25.
|
[116] | Walters JR, Harrison RG (2008) EST analysis of male accessory glands from Heliconius butterflies with divergent mating systems. BMC Genomics 9: 592.
|
[117] | Sirot LK, LaFlamme BA, Sitnik JL, Rubinstein CD, Avila FW, et al. (2009) Molecular social interactions: Drosophila melanogaster seminal fluid proteins as a case study. Adv Genet 68: 23–56.
|
[118] | Kovalick GE, Griffin DL (2005) Characterization of the SCP/TAPS gene family in Drosophila melanogaster. Insect Biochem Mol Biol 35: 825–835.
|
[119] | Roberts KP, Johnston DS, Nolan MA, Wooters JL, Waxmonsky NC, et al. (2007) Structure and function of epididymal protein cysteine-rich secretory protein-1. Asian J Androl 9: 508–514.
|
[120] | LaFlamme BA, Ram KR, Wolfner MF (2012) The Drosophila melanogaster seminal fluid protease “seminase” regulates proteolytic and post-mating reproductive processes. PLoS Genet 8: e1002435.
|
[121] | Gibbs GM, Roelants K, O'Bryan MK (2008) The CAP superfamily: cysteine-rich secretory proteins, antigen 5, and pathogenesis-related 1 proteins–roles in reproduction, cancer, and immune defense. Endocr Rev 29: 865–897.
|
[122] | King TP, Spangfort MD (2000) Structure and biology of stinging insect venom allergens. Int Arch Allergy Immunol 123: 99–106.
|
[123] | Schreiber MC, Karlo JC, Kovalick GE (1997) A novel cDNA from Drosophila encoding a protein with similarity to mammalian cysteine-rich secretory proteins, wasp venom antigen 5, and plant group 1 pathogenesis-related proteins. Gene 191: 135–141.
|
[124] | Charlab R, Valenzuela JG, Rowton ED, Ribeiro JM (1999) Toward an understanding of the biochemical and pharmacological complexity of the saliva of a hematophagous sand fly Lutzomyia longipalpis. Proc Natl Acad Sci U S A 96: 15155–15160.
|
[125] | Ameri M, Wang X, Wilkerson MJ, Kanost MR, Broce AB (2008) An immunoglobulin binding protein (antigen 5) of the stable fly (Diptera: Muscidae) salivary gland stimulates bovine immune responses. J Med Entomol 45: 94–101.
|
[126] | Valenzuela JG, Pham VM, Garfield MK, Francischetti IM, Ribeiro JM (2002) Toward a description of the sialome of the adult female mosquito Aedes aegypti. Insect Biochem Mol Biol 32: 1101–1122.
|
[127] | Syed ZA, H?rd T, Uv A, van Dijk-H?rd IF (2008) A potential role for Drosophila mucins in development and physiology. PLoS One 3: e3041.
|
[128] | Orr AG, Rutowski R (1991) The function of the sphragis in Cressida cressida (Fab.) (Lepidoptera, Papilionidae): a visual deterrent to copulation attempts. J Natural Hist 25: 703–710.
|
[129] | Lung O, Wolfner MF (2001) Identification and characterization of the major Drosophila melanogaster mating plug protein. Insect Biochem Mol Biol 31: 543–551.
|
[130] | Moreira PL, Lopez L, Martin J (2006) Femoral secretions and copulatory plugs convey chemical information about male identity and dominance status in Iberian rock lizards (Lacerta monticola). Behav Ecol Sociobiol 60: 166–174.
|
[131] | Rogers DW, Baldini F, Battaglia F, Panico M, Dell A, et al. (2009) Transglutaminase-mediated semen coagulation controls sperm storage in the malaria mosquito. PLoS Biol 7: e1000272.
|
[132] | Wesseling J, van der Valk SW, Vos HL, Sonnenberg A, Hilkens J (1995) Episialin (MUC1) overexpression inhibits integrin-mediated cell adhesion to extracellular matrix components. J Cell Biol 129: 255–265.
|
[133] | Chaturvedi P, Singh AP, Batra SK (2008) Structure, evolution, and biology of the MUC4 mucin. FASEB J 22: 966–981.
|
[134] | Baer B, Schmid-Hempel P (2001) Unexpected consequences of polyandry for parasitism and fitness in the bumblebee, Bombus terrestris. Evolution 55: 1639–1643.
|
[135] | Rawlings ND, Barrett AJ, Bateman A (2012) MEROPS: the database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res 40: D343–350.
|
[136] | Dorus S, Busby SA, Gerike U, Shabanowitz J, Hunt DF, et al. (2006) Genomic and functional evolution of the Drosophila melanogaster sperm proteome. Nat Genet 38: 1440–1445.
|
[137] | Wasbrough ER, Dorus S, Hester S, Howard-Murkin J, Lilley K, et al. (2010) The Drosophila melanogaster sperm proteome-II (DmSP-II). J Proteomics 73: 2171–2185.
|
[138] | Dorus S, Wilkin EC, Karr TL (2011) Expansion and functional diversification of a leucyl aminopeptidase family that encodes the major protein constituents of Drosophila sperm. BMC Genomics 12: 177.
|
[139] | Rosetto M, Belardinelli M, Fausto AM, Marchini D, Bongiorno G, et al. (2003) A mammalian-like lipase gene is expressed in the female reproductive accessory glands of the sand fly Phlebotomus papatasi (Diptera, Psychodidae). Insect Mol Biol 12: 501–508.
|
[140] | Meikle D, Sheehan K, Phillis D, Richmond R (1990) Localization and longevity of seminal-fluid esterase-6 in mated female Drosophila melanogaster. J Insect Physiol 36: 93–101.
|
[141] | Murphy EV, Zhang Y, Zhu W, Biggs J (1995) The human glioma pathogenesis-related protein is structurally related to plant pathogenesis-related proteins and its gene is expressed specifically in brain tumors. Gene 159: 131–135.
|
[142] | Chen G, Gingerich J, Soper L, Douglas GR, White PA (2010) Induction of lacZ mutations in MutaMouse primary hepatocytes. Environ Mol Mutagen 51: 330–337.
|
[143] | Haynes SR, Cooper MT, Pype S, Stolow DT (1997) Involvement of a tissue-specific RNA recognition motif protein in Drosophila spermatogenesis. Mol Cell Biol 17: 2708–2715.
|
[144] | Leopold R (1976) Role of male accessory glands in insect reproduction. Annu Rev Entomol 21: 199–221.
|
[145] | Chen P (1984) The functional morphology and biochemistry of insect male accessory glands and their secretions. Annu Rev Entomol 29: 233–255.
|
[146] | Couche G, Gillott C, Tobe S, Feyereisen R (1985) Juvenile hormone biosynthesis during sexual maturation and after mating in the adult migratory grasshopper, Melanoplus sanguinipes. Can J Zool 63: 2789–2792.
|
[147] | Davey K (1985) The male reproductive tract. In: Kerket GA GL, editor. Comprehensive Insect Physiology, Biochemistry, and Pharmacology. Oxford: Pergamon. pp. 1–14.
|
[148] | Regis L, Gomes Y, Furtado A (1985) Factors influencing male accessory-gland activity and 1st mating in Triatoma infestans and Panstrongylus megistus (Hemiptera, Reduviidae). Insect Science and Its Application 6: 579–583.
|
[149] | Gold S, Davey K (1989) The effect of juvenile hormone on protein synthesis in the transparent accessory gland of male Rhodnius prolixus. Insect Biochem 19: 139–143.
|
[150] | Gillott C (1988) Arthropoda-Insecta. In: Adiyodi R, Adiyodi K, editors. Reproductive biology of invertebrates. New York: Wiley and Sons. pp. 319–471.
|
[151] | Wolfner MF, Partridge L, Lewin S, Kalb JM, Chapman T, et al. (1997) Mating and hormonal triggers regulate accessory gland gene expression in male Drosophila. J Insect Physiol 43: 1117–1123.
|
[152] | Yamamoto K, Chadarevian A, Pellegrini M (1988) Juvenile hormone action mediated in male accessory glands of Drosophila by calcium and kinase C. Science 239: 916–919.
|
[153] | Wilson TG, DeMoor S, Lei J (2003) Juvenile hormone involvement in Drosophila melanogaster male reproduction as suggested by the Methoprene-tolerant(27) mutant phenotype. Insect Biochem Mol Biol 33: 1167–1175.
|
[154] | Tobe SS, Stay B (1985) Structure and regulation of the corpus allatum. Adv Insect Physiol 18: 305–432.
|
[155] | Borovsky D, Carlson DA, Hancock RG, Rembold H, van Handel E (1994) De novo biosynthesis of juvenile hormone III and I by the accessory glands of the male mosquito. Insect Biochem Mol Biol 24: 437–444.
|
[156] | Vannini L, Ciolfi S, Dallai R, Frati F, Hoffmann KH, et al. (2010) Putative-farnesoic acid O-methyltransferase (FAMeT) in medfly reproduction. Arch Insect Biochem Physiol 75: 92–106.
|
[157] | Teal PE, Gomez-Simuta Y, Proveaux AT (2000) Mating experience and juvenile hormone enhance sexual signaling and mating in male Caribbean fruit flies. Proc Natl Acad Sci U S A 97: 3708–3712.
|
[158] | Zalewska M, O?yhar A, Kochman M (2011) Identification of specific interaction of juvenile hormone binding protein with isocitrate dehydrogenase. Acta Biochim Pol 58: 119–124.
|
[159] | Trowell SC (1992) High affinity juvenile hormone carrier proteins in the haemolymph of insects. Comp Biochem Physiol (B) 103: 795–807.
|
[160] | De Kort CAD, Granger NA (1996) Regulation of JH titers: the relevance of degradative enzymes and binding proteins. Arch Insect Biochem Physiol 33: 1–26.
|
[161] | Goodman WG, Granger NA (2005) The juvenile hormones. In: Gilbert LI, Iatrou K, Gill SS, editors. ScienceComprehensive Molecular Insect Science. Oxford: Elsevier. pp. 319–408.
|
[162] | Fischer BE, Wasbrough E, Meadows LA, Randlet O, Dorus S, et al. (2012) Conserved properties of Drosophila and human spermatozoal mRNA repertoires. Proc Biol Sci 279: 2636–2644.
|
[163] | Simmerl E, Sch?fer M, Sch?fer U (1995) Structure and regulation of a gene cluster for male accessory gland transcripts in Drosophila melanogaster. Insect Biochem Mol Biol 25: 127–137.
|
[164] | Cho KS, Won DH, Cha GH, Lee CC (2000) Regulation of Mst57Dc expression in male accessory glands of Drosophila melanogaster. Mol Cells 10: 180–185.
|
[165] | Ellis LL, Carney GE (2010) Mating alters gene expression patterns in Drosophila melanogaster male heads. BMC Genomics 11: 558.
|
[166] | Campbell PM, Healy MJ, Oakeshott JG (1992) Characterization of juvenile hormone esterase in Drosophila melanogaster. Insect Biochem Mol Biol 22: 665–677.
|
[167] | Campbell PM, Oakeshott JG, Healy MJ (1998) Purification and kinetic characterisation of juvenile hormone esterase from Drosophila melanogaster. Insect Biochem Mol Biol 28: 501–515.
|
[168] | Marchini D, Del Bene G, Falso LF, Dallai R (2001) Structural organization of the copulation site in the medfly Ceratitis capitata (Diptera: Tephritidae) and observations on sperm transfer and storage. Arth Struct & Dev 30: 39–54.
|
[169] | Vera MT, Cladera JL, Calcagno G, Vilardi JC, McInnis DO, et al. (2003) Remating of wild Ceratitis capitata (Diptera: Tephritidae) females in field cages. Ann Entomol Soc Am 96: 563–570.
|
[170] | Parker GA (1998) Sperm competition and the evolution of ejaculates: towards a theory base In: Birkhead T.R. MAP, editor. Sperm competition and sexual selection London, England: Academic 3–54.
|