[1] | Lowe JB (2001) Glycosylation, immunity, and autoimmunity. Cell 104: 809–812.
|
[2] | Jafar-Nejad H, Leonardi J, Fernandez-Valdivia R (2010) Role of glycans and glycosyltransferases in the regulation of Notch signaling. Glycobiology 20: 931–949.
|
[3] | Helenius A, Aebi M (2001) Intracellular functions of N-linked glycans. Science 291: 2364–2369.
|
[4] | Blomme B, Van SC, Callewaert N, Van VH (2009) Alteration of protein glycosylation in liver diseases. J Hepatol 50: 592–603.
|
[5] | Durand G, Seta N (2000) Protein glycosylation and diseases: blood and urinary oligosaccharides as markers for diagnosis and therapeutic monitoring. Clin Chem 46: 795–805.
|
[6] | Ohtsubo K, Marth JD (2006) Glycosylation in cellular mechanisms of health and disease. Cell 126: 855–867.
|
[7] | He QY, Chiu JF (2003) Proteomics in biomarker discovery and drug development. J Cell Biochem 89: 868–886.
|
[8] | Orchard S (2007) Proteomics: from technology development to biomarker applications. Expert Rev Proteomics 4: 709–710.
|
[9] | Firestein GS (2003) Evolving concepts of rheumatoid arthritis. Nature 423: 356–361.
|
[10] | Tilleman K, Deforce D (2008) Proteomics in rheumatology. Expert Rev Proteomics 5: 755–759.
|
[11] | Carson DA, Chen PP, Fox RI, Kipps TJ, Jirik F, et al. (1987) Rheumatoid factor and immune networks. Annu Rev Immunol 5: 109–126.
|
[12] | Parkkinen J (1989) Aberrant lectin-binding activity of immunoglobulin G in serum from rheumatoid arthritis patients. Clin Chem 35: 1638–1643.
|
[13] | Saroha A, Biswas S, Chatterjee BP, Das HR (2011) Altered glycosylation and expression of plasma alpha-1-acid glycoprotein and haptoglobin in rheumatoid arthritis. J Chromatogr B Analyt Technol Biomed Life Sci 879: 1839–1843.
|
[14] | Saroha A, Das HR (2011) Altered glycosylation in autoimmune diseases. Trends Carbo Res 3: 1–12.
|
[15] | Ryden I, Pahlsson P, Lundblad A, Skogh T (2002) Fucosylation of alpha1-acid glycoprotein (orosomucoid) compared with traditional biochemical markers of inflammation in recent onset rheumatoid arthritis. Clin Chim Acta 317: 221–229.
|
[16] | Raghav SK, Gupta B, Agrawal C, Saroha A, Das RH, et al. (2006) Altered expression and glycosylation of plasma proteins in rheumatoid arthritis. Glycoconj J 23: 167–173.
|
[17] | Higai K, Aoki Y, Azuma Y, Matsumoto K (2005) Glycosylation of site-specific glycans of alpha1-acid glycoprotein and alterations in acute and chronic inflammation. Biochim Biophys Acta 1725: 128–135.
|
[18] | Gornik I, Maravic G, Dumic J, Flogel M, Lauc G (1999) Fucosylation of IgG heavy chains is increased in rheumatoid arthritis. Clin Biochem 32: 605–608.
|
[19] | Malhotra R, Wormald MR, Rudd PM, Fischer PB, Dwek RA, et al. (1995) Glycosylation changes of IgG associated with rheumatoid arthritis can activate complement via the mannose-binding protein. Nat Med 1: 237–243.
|
[20] | Tachibana K, Nakamura S, Wang H, Iwasaki H, Tachibana K, et al. (2006) Elucidation of binding specificity of Jacalin toward O-glycosylated peptides: quantitative analysis by frontal affinity chromatography. Glycobiology 16: 46–53.
|
[21] | Durham M, Regnier FE (2006) Targeted glycoproteomics: serial lectin affinity chromatography in the selection of O-glycosylation sites on proteins from the human blood proteome. J Chromatogr A 1132: 165–73.
|
[22] | Schwientek T, Mandel U, Roth U, Müller S, Hanisch FG (2007) A serial lectin approach to the mucin-type O-glycoproteome of Drosophila melanogaster S2 cells. Proteomics 7: 3264–3277.
|
[23] | Choi-Miura NH (2001) Quantitative measurement of the novel human plasma protein, IHRP, by sandwich ELISA. Biol Pharm Bull 24: 214–217.
|
[24] | Oikawa O, Higuchi T, Yamazaki T, Yamamoto C, Fukuda N, et al. (2007) Evaluation between serum fetuin-A and each parameter of patients on hemodialysis. Clin Exp Nephrol 11: 304–308.
|
[25] | Van den Steen P, Rudd PM, Dwek RA, Opdenakker G (1998) Concepts and principles of O-linked glycosylation. Crit Rev Biochem Mol Biol 33: 151–208.
|
[26] | Daniels MA, Hogquist KA, Jameson SC (2002) Sweet ‘n’ sour: the impact of differential glycosylation on T cell responses. Nat Immunol 3: 903–910.
|
[27] | Kirmiz C, Li B, An HJ, Clowers BH, Chew HK, et al. (2007) A serum glycomics approach to breast cancer biomarkers. Mol Cell Proteomics 6: 43–55.
|
[28] | Kabir S (1998) Jacalin: a jackfruit (Artocarpus heterophyllus) seed-derived lectin of versatile applications in immunobiological research. J Immunol Methods 212: 193–211.
|
[29] | Tercero JC, az-Maurino T (1988) Affinity chromatography of fibrinogen on Lens culinaris agglutinin immobilized on CNBr-activated sepharose: study of the active groups involved in nonspecific adsorption. Anal Biochem 174: 128–136.
|
[30] | Cai T, Yu P, Monga SP, Mishra B, Mishra L (1998) Identification of mouse itih-4 encoding a glycoprotein with two EF-hand motifs from early embryonic liver. Biochim Biophys Acta 1398: 32–37.
|
[31] | Zhuo L, Kimata K (2008) Structure and function of inter-alpha-trypsin inhibitor heavy chains. Connect Tissue Res 49: 311–320.
|
[32] | Song J, Patel M, Rosenzweig CN, Chan-Li Y, Sokoll LJ, et al. (2006) Quantification of fragments of human serum inter-alpha-trypsin inhibitor heavy chain 4 by a surface-enhanced laser desorption/ionization-based immunoassay. Clin Chem 52: 1045–1053.
|
[33] | Mohamed E, Abdul-Rahman PS, Doustjalali SR, Chen Y, Lim BK, et al. (2008) Lectin-based electrophoretic analysis of the expression of the 35 kDa inter-alpha-trypsin inhibitor heavy chain H4 fragment in sera of patients with five different malignancies. Electrophoresis 29: 2645–2650.
|
[34] | Pineiro M, Andres M, Iturralde M, Carmona S, Hirvonen J, et al. (2004) ITIH4 (inter-alpha-trypsin inhibitor heavy chain 4) is a new acute-phase protein isolated from cattle during experimental infection. Infect Immun 72: 3777–3782.
|
[35] | Choi-Miura NH, Takahashi K, Yoda M, Saito K, Hori M, et al. (2000) The novel acute phase protein, IHRP, inhibits actin polymerization and phagocytosis of polymorphonuclear cells. Inflamm Res 49: 305–310.
|
[36] | Bhattacharyya S, Siegel ER, Achenbach SJ, Khosla S, Suva LJ (2008) Serum biomarker profile associated with high bone turnover and BMD in postmenopausal women. J Bone Miner Res 23: 1106–1117.
|
[37] | Binkert C, Demetriou M, Sukhu B, Szweras M, Tenenbaum HC, et al. (1999) Regulation of osteogenesis by fetuin. J Biol Chem 274: 28514–28520.
|
[38] | Schafer C, Heiss A, Schwarz A, Westenfeld R, Ketteler M, et al. (2003) The serum protein alpha 2-Heremans-Schmid glycoprotein/fetuin-A is a systemically acting inhibitor of ectopic calcification. J Clin Invest 112: 357–366.
|
[39] | Li W, Zhu S, Li J, Huang Y, Rongrong Z, et al. (2011) A Hepatic Protein, Fetuin-A, Occupies a Protective Role in Lethal Systemic Inflammation. PLoS ONE 6: e16945.
|
[40] | Jersmann HP, Dransfield I, Hart SP (2003) Fetuin/alpha2-HS glycoprotein enhances phagocytosis of apoptotic cells and macropinocytosis by human macrophages. Clin Sci (Lond) 105: 273–278.
|
[41] | Memoli B, De BL, Favia P, Morelli S, Lopez LC, et al. (2007) Fetuin-A gene expression, synthesis and release in primary human hepatocytes cultured in a galactosylated membrane bioreactor. Biomaterials 28: 4836–4844.
|
[42] | El-Shehaby AM, Zakaria A, El-Khatib M, Mostafa N (2010) Association of fetuin-A and cardiac calcification and inflammation levels in hemodialysis patients. Scand J Clin Lab Invest 70: 575–582.
|
[43] | Schauer R (1982) Sialic Acids, Chemistry, Metabolism, and Function. New York: Springer-Verlag.
|
[44] | Varki ARC, Esko J, Freeze H, Hart G, Marth J (1999) Essentials of glycobiology. Cold Spring Harbor Laboratory Press Publications.
|
[45] | Sawada M, Moriya S, Saito S, Shineha R, Satomi S, et al. (2002) Reduced sialidase expression in highly metastatic variants of mouse colon adenocarcinoma 26 and retardation of their metastatic ability by sialidase overexpression. Int J Cancer 97: 180–185.
|
[46] | Xu LX, Zhao MH (2005) Aberrantly glycosylated serum IgA1 are closely associated with pathologic phenotypes of IgA nephropathy. Kidney Int 68: 167–172.
|
[47] | Zhao J, Simeone DM, Heidt D, Anderson MA, Lubman DM (2006) Comparative serum glycoproteomics using lectin selected sialic acid glycoproteins with mass spectrometric analysis: application to pancreatic cancer serum. J Proteome Res 5: 1792–1802.
|
[48] | Tolleshaug H (1984) Intracellular segregation of asialo-transferrin and asialo-fetuin following uptake by the same receptor system in suspended hepatocytes. Biochim Biophys Acta 803: 182–190.
|
[49] | Mackiewicz A (1992) Cytokine, cytokine receptors and glucocorticoid network controlling N-glycosylation of acute phase proteins in vitro. Folia Histochem Cytobiol 30: 165–166.
|
[50] | Przybysz M, Maszczak D, Borysewicz K, Szechinski J, Katnik-Prastowska I (2007) Relative sialylation and fucosylation of synovial and plasma fibronectins in relation to the progression and activity of rheumatoid arthritis. Glycoconj J 24: 543–550.
|
[51] | Kundranda MN, Ray S, Saria M, Friedman D, Matrisian LM, et al. (2004) Annexins expressed on the cell surface serve as receptors for adhesion to immobilized fetuin-A. Biochim Biophys Acta 1693: 111–123.
|
[52] | Arnett FC, Edworthy SM, Bloch DA, McShane DJ, Fries JF, et al. (1988) The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum 31: 315–324.
|
[53] | Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248–254.
|
[54] | Julenius K, M?lgaard A, Gupta R, Brunak S (2005) Prediction, conservation analysis and structural characterization of mammalian mucin-type O-glycosylation sites. Glycobiology 15: 153–164.
|