全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

Renalase's Expression and Distribution in Renal Tissue and Cells

DOI: 10.1371/journal.pone.0046442

Full-Text   Cite this paper   Add to My Lib

Abstract:

To study renalase's expression and distribution in renal tissues and cells, renalase coded DNA vaccine was constructed, and anti-renalase monoclonal antibodies were produced using DNA immunization and hybridoma technique, followed by further investigation with immunological testing and western blotting to detect the expression and distribution of renalase among the renal tissue and cells. Anti-renalase monoclonal antibodies were successfully prepared by using DNA immunization technique. Further studies with anti-renalase monoclonal antibody showed that renalase expressed in glomeruli, tubule, mesangial cells, podocytes, renal tubule epithelial cells and its cells supernatant. Renalase is wildly expressed in kidney, including glomeruli, tubule, mesangial cells, podocytes and tubule epithelial cells, and may be secreted by tubule epithelial cells primarily.

References

[1]  Xu J, Li G, Wang P, Velazquez H, Yao X, et al. (2005) Desir: Renalase is a novel, soluble monoamine oxidase that regulates cardiac function and blood pressure. J Clin Invest 115: 1275–1280.
[2]  Desir GV (2008) Renalase deficiency in chronic kidney disease, and its contribution to hypertension and cardiovascular disease. Curr Opin Nephrol Hypertens 17: 181–185.
[3]  Desir GV (2007) Renalase is a novel renal hormone that regulates cardiovascular function. J Am Soc Hypertens 1: 99–103.
[4]  Xu J, Desir GV (2007) Renalase, a new renal hormone: its role in health and disease. Curr Opin Nephrol Hypertens 16: 373–378.
[5]  Wang F, Wang N, Xing T, Cao Y, Xiang H (2009) The cloning and expression of renalase and the preparation of its monoclonal antibody. J Shanghai Jiaotong Univ 14: 376–379.
[6]  Wang F, Wang N, Xing T (2010) Construction of eukaryotic recombinant vector of renalase and its expression as a Eukaryotic Protein. J Shanghai Jiaotong Univ 15: 637–640.
[7]  Tang CK, Pietersz GA (2009) Intracellular detection and immune signaling pathways of DNA vaccines. Expert Rev Vaccines 8: 1161–1170.
[8]  Garren H (2009) DNA vaccines for autoimmune diseases. Expert Rev Vaccines 8: 1195–1203.
[9]  Bian C, Zhang F, Wang F, Ling Z, Luo M, et al. (2010) Development of retinol-binding protein 4 immunocolloidal gold fast test strip using high-sensitivity monoclonal antibodies generated by DNA immunization. Acta Biochim Biophys Sin 42: 847–853.
[10]  Wang F, Xing T, Wang N (2011) Construction and DNA Immunization of Human renalase eukaryotic expression vector. NDT plus 4: 221.
[11]  Chen J, Fang F, Li X, Chang H, Chen Z (2005) Protection against influenza virus infection in BALB/c mice immunized with a single dose of neuraminidase-expressing DNAs by electroporation. Vaccine 23: 4322–4328.
[12]  Bian C, Zhang X, Cai X, Zhang L, Chen Z, et al. (2009) Conserved amino acids W423 and N424 in receptor-binding domain of SARS-CoV are potential targets for therapeutic monoclonal antibody. Virology 383: 39–46.
[13]  Zhou T, Song W, Wang F, Ni PW, Chen N, et al. (2003) Cloning, expression of the lectin-EGF domain of P-selectin, and preparation of its monoclonal antibody. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai) 35: 172–176.
[14]  Neumann J, Ligtenberg G, Klein II, Koomans HA, Blankestijn PJ (2004) Sympathetic hyperactivity in chronic kidney disease: pathogenesis, clinical relevance, and treatment. Kidney Int 65: 1568–1576.
[15]  Desir GV (2011) Role of renalase in the regulation of blood pressure and the renal dopamine system. Curr Opin Nephrol Hypertens 20: 31–36.
[16]  Hennebry SC, Eikelis N, Socratous F, Desir G, Lambert G, et al. (2010) Renalase, a novel soluble FAD-dependent protein, is synthesized in the brain and peripheral nerves. Mol Psychiatry 15: 234–236.
[17]  Desir GV (2009) Regulation of blood pressure and cardiovascular function by renalase. Kidney Int 76: 366–370.
[18]  Milani M, Ciriello F, Baroni S, Pandini V, Canevari G, et al. (2011) FAD-binding site and NADP reactivity in human renalase: a new enzyme involved in blood pressure regulation. J Mol Biol 411: 463–473.
[19]  Wang J, Qi S, Cheng W, Li W, Wang F, et al. (2008) Identification, expression and tissue distribution of a renalase homologue from mouse. Mol Biol Rep 35: 613–620.
[20]  Li G, Xu J, Wang P, Velazquez H, Li Y, et al. (2008) Catecholamines regulate the activity, secretion, and synthesis of renalase. Circulation 117: 1277–1282.
[21]  Ghosh SS, Krieg RJ, Sica DA, Wang R, Fakhry I, et al. (2009) Cardiac hypertrophy in neonatal nephrectomized rats: the role of the sympathetic nervous system. Pediatr Nephrol 24: 367–377.
[22]  Medvedev AE, Veselovsky AV, Fedchenko VI (2010) Renalase, a new secretory enzyme responsible for selective degradation of catecholamines: achievements and unsolved problems. Biochemistry (Mosc) 75: 951–958.
[23]  Paulis L, Unger T (2010) Novel therapeutic targets for hypertension. Nat Rev Cardiol 7: 431–441.
[24]  Pandini V, Ciriello F, Tedeschi G, Rossoni G, Zanetti G, et al. (2010) Synthesis of human renalase1 in Escherichia coli and its purification as a FAD-containing holoprotein. Protein Expr Purif 72: 244–253.
[25]  Boomsma F, Tipton KF (2007) Renalase, a catecholamine-metabolising enzyme? J Neural Transm 114: 775–776.
[26]  Hennebry SC, Eikelis N, Socratous F, Desir G, Lambert G, et al. (2010) Renalase, a novel soluble FAD-dependent protein, is synthesized in the brain and peripheral nerves. Mol Psychiatry 15: 234–236.
[27]  Schlaich MP, Socratous F, Hennebry S, Eikelis N, Lambert EN, et al. (2009) Sympathetic activation in chronic renal failure. J Am Soc Nephrol 20: 933–939.
[28]  Malyszko J, Zbroch E, Malyszko JS, Koc-Zorawska E, Mysliwiec M (2011) Renalase, a novel regulator of blood pressure, is predicted by kidney function in renal transplant recipients. Transplant Proc 43: 3004–3007.
[29]  Desir G (2012) Novel insights into the physiology of renalase and its role in hypertension and heart disease. Pediatr Nephrol 27: 719–725.
[30]  Zhao Q, Fan Z, He J, Chen S, Li H, et al. (2007) Renalase gene is a novel susceptibility gene for essential hypertension: a two-stage association study in northern Han Chinese population. J Mol Med (Berl) 85: 877–885.
[31]  Farzaneh-Far R, Desir GV, Na B, Schiller NB, Whooley MA (2010) A functional polymorphism in renalase (Glu37Asp) is associated with cardiac hypertrophy,dysfunction, and ischemia: data from the heart and soul study. PLoS One 5: e13496.
[32]  Buraczynska M, Zukowski P, Buraczynska K, Mozul S, Ksiazek A (2011) Renalase Gene Polymorphisms in Patients With Type 2 Diabetes, Hypertension and Stroke. Neuromolecular Med 13: 321–327.
[33]  Stec A, Semczuk A, Furmaga J, Ksiazek A, Buraczynska M (2011) Polymorphism of the renalase gene in end-stage renal disease patients affected by hypertension. Nephrol Dial Transplant [Epub ahead of print].
[34]  Wu Y, Xu J, Velazquez H, Wang P, Li G, et al. (2011) Renalase deficiency aggravates ischemic myocardial damage. Kidney Int 79: 853–860.
[35]  Gu R, Lu W, Xie J, Bai J, Xu B (2011) Renalase deficiency in heart failure model of rats–a potential mechanism underlying circulating norepinephrine accumulation. PLoS One 6: e14633.
[36]  Weinman EJ, Biswas R, Steplock D, Wang P, Lau YS, et al. (2011) Increased renal dopamine and acute renal adaptation to a high-phosphate diet. Am J Physiol Renal Physiol 300: F1123–1129.
[37]  Esler MD, Krum H, Sobotka PA, Schlaich MP, Schmieder RE, et al. (2010) Renal sympathetic denervation in patients with treatment-resistant hypertension (The Symplicity HTN-2 Trial): a randomised controlled trial. Lancet 376: 1903–1909.
[38]  Jiang W, Guo Y, Tan L, Tang X, Yang Q, et al. (2012) Impact of renal denervation on renalase expression in adult rats with spontaneous hypertension. Exp Ther Med 4: 493–496.
[39]  Malyszko J, Koc-Zorawska E, Malyszko JS, Kozminski P, Zbroch E, et al. (2012) Renalase, stroke, and hypertension in hemodialyzed patients. Ren Fail 34: 727–731.
[40]  Zbroch E, Malyszko J, Koc-Zorawska E, Mysliwiec M (2012) Renalase in peritoneal dialysis patients is not related to blood pressure, but to dialysis vintage. Perit Dial Int 32: 348–351.
[41]  Zbroch E, Malyszko J, Malyszko JS, Koc-Zorawska E, Mysliwiec M (2012) Renalase, a Novel Enzyme Involved in Blood Pressure Regulation, Is Related to Kidney Function but Not to Blood Pressure in Hemodialysis Patients. Kidney Blood Press Res 35: 395–399.
[42]  Przybylowski P, Malyszko J, Kozlowska S, Koc-Zorawska E, Mysliwiec M (2011) Serum renalase depends on kidney function but not on blood pressure in heart transplant recipients. Transplant Proc 43: 3888–3891.
[43]  Zbroch E, Malyszko J, Koc-Zorawska E, Mysliwiec M (2012) Renalase, kidney function, and markers of endothelial dysfunction in renal transplant recipients. Pol Arch Med Wewn 122: 40–44.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133