全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

High Bias Gas Flows Increase Lung Injury in the Ventilated Preterm Lamb

DOI: 10.1371/journal.pone.0047044

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background Mechanical ventilation of preterm babies increases survival but can also cause ventilator-induced lung injury (VILI), leading to the development of bronchopulmonary dysplasia (BPD). It is not known whether shear stress injury from gases flowing into the preterm lung during ventilation contributes to VILI. Methods Preterm lambs of 131 days’ gestation (term = 147 d) were ventilated for 2 hours with a bias gas flow of 8 L/min (n = 13), 18 L/min (n = 12) or 28 L/min (n = 14). Physiological parameters were measured continuously and lung injury was assessed by measuring mRNA expression of early injury response genes and by histological analysis. Control lung tissue was collected from unventilated age-matched fetuses. Data were analysed by ANOVA with a Tukey post-hoc test when appropriate. Results High bias gas flows resulted in higher ventilator pressures, shorter inflation times and decreased ventilator efficiency. The rate of rise of inspiratory gas flow was greatest, and pulmonary mRNA levels of the injury markers, EGR1 and CTGF, were highest in lambs ventilated with bias gas flows of 18 L/min. High bias gas flows resulted in increased cellular proliferation and abnormal deposition of elastin, collagen and myofibroblasts in the lung. Conclusions High ventilator bias gas flows resulted in increased lung injury, with up-regulation of acute early response genes and increased histological lung injury. Bias gas flows may, therefore, contribute to VILI and BPD.

References

[1]  Jobe AH, Bancalari E (2001) Bronchopulmonary dysplasia. Am J Respir Crit Care Med 163: 1723–1729.
[2]  Bancalari E, Claure N, Sosenko IR (2003) Bronchopulmonary dysplasia: changes in pathogenesis, epidemiology and definition. Semin Neonatol 8: 63–71.
[3]  Albertine KH, Jones GP, Starcher BC, Bohnsack JF, Davis PL, et al. (1999) Chronic lung injury in preterm lambs. Disordered respiratory tract development. Am J Respir Crit Care Med 159: 945–958.
[4]  Coalson JJ, Winter VT, Siler-Khodr T, Yoder BA (1999) Neonatal chronic lung disease in extremely immature baboons. Am J Respir Crit Care Med 160: 1333–1346.
[5]  Pierce RA, Albertine KH, Starcher BC, Bohnsack JF, Carlton DP, et al. (1997) Chronic lung injury in preterm lambs: disordered pulmonary elastin deposition. Am J Physiol 272: L452–460.
[6]  Thibeault DW, Mabry SM, Ekekezie II, Zhang X, Truog WE (2003) Collagen scaffolding during development and its deformation with chronic lung disease. Pediatrics 111: 766–776.
[7]  Allison BJ, Crossley KJ, Flecknoe SJ, Davis PG, Morley CJ, et al. (2008) Ventilation of the very immature lung in utero induces injury and BPD-like changes in lung structure in fetal sheep. Pediatr Res 64: 387–392.
[8]  Webb HH, Tierney DF (1974) Experimental pulmonary edema due to intermittent positive pressure ventilation with high inflation pressures. Protection by positive end-expiratory pressure. Am Rev Respir Dis 110: 556–565.
[9]  Slutsky AS (1999) Lung injury caused by mechanical ventilation. Chest 116: 9S–15S.
[10]  Dreyfuss D, Saumon G (1992) Barotrauma is volutrauma, but which volume is the one responsible? Intensive Care Med 18: 139–141.
[11]  Hernandez LA, Peevy KJ, Moise AA, Parker JC (1989) Chest wall restriction limits high airway pressure-induced lung injury in young rabbits. J Appl Physiol 66: 2364–2368.
[12]  Speer CP (2006) Inflammation and bronchopulmonary dysplasia: A continuing story. Semin Fetal Neonatal Med 11: 354–362.
[13]  Roberts D, Dalziel SR (2006) Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth. Cochrane Database Syst Rev: CD004454.
[14]  Crowther CA, Haslam RR, Hiller JE, Doyle LW, Robinson JS (2006) Australasian Collaborative Trial of Repeat Doses of Steroids Study Group. Neonatal respiratory distress syndrome after repeat exposure to antenatal corticosteroids: a randomised controlled trial. Lancet 367: 1913–1919.
[15]  Sinn JKH, Ward MC, Henderson-Smart DJ (2002) Developmental outcome of preterm infants after surfactant therapy: systematic review of randomized controlled trials. J Paediatr Child Health 38: 597–600.
[16]  Gerhardt T, Claure N, Bancalari E (2008) Role of pulmonary function testing in the management of neonates on mechanical ventilation. In: Bancalari E, Polin RA, editors. The newborn lung: neonatology questions and controversies. 1st ed. Philadelphia: Saunders Elsevier. 419–448.
[17]  Bach KP, Kuschel CA, Oliver MH, Bloomfield FH (2009) Ventilator gas flow rates affect inspiratory time and ventilator efficiency index in term lambs. Neonatology 96: 259–264.
[18]  Zhang W, Yan SD, Zhu A, Zou YS, Williams M, et al. (2000) Expression of Egr-1 in late stage emphysema. Am J Pathol 157: 1311–1320.
[19]  Ning W, Li CJ, Kaminski N, Feghali-Bostwick CA, Alber SM, et al. (2004) Comprehensive gene expression profiles reveal pathways related to the pathogenesis of chronic obstructive pulmonary disease. Proc Natl Acad Sci U S A 101: 14895–14900.
[20]  Pan LH, Yamauchi K, Uzuki M, Nakanishi T, Takigawa M, et al. (2001) Type II alveolar epithelial cells and interstitial fibroblasts express connective tissue growth factor in IPF. Eur Respir J 17: 1220–1227.
[21]  Wallace MJ, Probyn M, Zahra VA, Crossley KJ, Cole TJ, et al. (2009) Early biomarkers and potential mediators of ventilation-induced lung injury in very preterm lambs. Respir Res 10: 19.
[22]  Leslie KO, Mitchell JJ, Low RB (1992) Lung myofibroblasts. Cell Motil Cytoskeleton 22: 92–98.
[23]  Leslie KO, Mitchell JJ, Woodcock-Mitchell JL, Low RB (1990) Alpha smooth muscle actin expression in developing and adult human lung. Differentiation 44: 143–149.
[24]  Spitzer AR, Greenspan JS, Fox WW (2003) Positive-pressure ventilation; pressure-limited and time-cycled ventilation. In: Goldsmith JP, Karotkin EH, editors. Assisted ventilation of the neonate. Philadelphia: Saunders. 149–169.
[25]  Greenough A (1988) The premature infant's respiratory response to mechanical ventilation. Early Hum Dev 17: 1–5.
[26]  Simbruner G, Gregory GA (1981) Performance of neonatal ventilators: the effects of changes in resistance and compliance. Crit Care Med 9: 509–514.
[27]  Boros SJ, Bing DR, Mammel MC, Hagen E, Gordon MJ (1984) Using conventional infant ventilators at unconventional rates. Pediatrics 74: 487–492.
[28]  Rich PB, Reickert CA, Sawada S, Awad SS, Lynch WR, et al. (2000) Effect of rate and inspiratory flow on ventilator-induced lung injury. J Trauma 49: 903–911.
[29]  Kamlin CO, Davis PG (2003) Long versus short inspiratory times in neonates receiving mechanical ventilation. Cochrane Database Syst Rev: CD004503.pub004502.
[30]  Jarreau PH, Louis B, Dassieu G, Desfrere L, Blanchard PW, et al. (1999) Estimation of inspiratory pressure drop in neonatal and pediatric endotracheal tubes. J Appl Physiol 87: 36–46.
[31]  Seeley RR, Stephens TD, Tate P (1992) Respiratory system. In: Allen D, editor. Anatomy and Physiology. St. Louis: Mosby-Year Book. 735–770.
[32]  Sozo F, Wallace MJ, Zahra VA, Filby CE, Hooper SB (2006) Gene expression profiling during increased fetal lung expansion identifies genes likely to regulate development of the distal airways. Physiol Genomics 24: 105–113.
[33]  Perkowski S, Sun J, Singhal S, Santiago J, Leikauf GD, et al. (2003) Gene expression profiling of the early pulmonary response to hyperoxia in mice. Am J Respir Cell Mol Biol 28: 682–696.
[34]  Kubota S, Takigawa M (2007) CCN family proteins and angiogenesis: from embryo to adulthood. Angiogenesis 10: 1–11.
[35]  Chen CC, Mo FE, Lau LF (2001) The angiogenic factor Cyr61 activates a genetic program for wound healing in human skin fibroblasts. J Biol Chem 276: 47329–47337.
[36]  Zhou D, Herrick DJ, Rosenbloom J, Chaqour B (2005) Cyr61 mediates the expression of VEGF, alpha-v Integrin and alpha-actin genes through cytoskeletally-based mechanotransduction mechanisms in bladder smooth muscle cells. J Appl Physiol 98: 2344–2354.
[37]  Sakamoto S, Yokoyama M, Aoki M, Suzuki K, Kakehi Y, et al. (2004) Induction and function of CYR61 (CCN1) in prostatic stromal and epithelial cells: CYR61 is required for prostatic cell proliferation. Prostate 61: 305–317.
[38]  Yan SF, Fujita T, Lu J, Okada K, Shan Zou Y, et al. (2000) Egr-1, a master switch coordinating upregulation of divergent gene families underlying ischemic stress. Nat Med 6: 1355–1361.
[39]  Landesberg LJ, Ramalingam R, Lee K, Rosengart TK, Crystal RG (2001) Upregulation of transcription factors in lung in the early phase of postpneumonectomy lung growth. Am J Physiol Lung Cell Mol Physiol 281: L1138–L1149.
[40]  Young CD, Moore GW, Hutchins GM (1980) Connective tissue arrangement in respiratory airways. Anat Rec 198: 245–254.
[41]  Wright C, Strauss S, Toole K, Burt AD, Robson SC (1999) Composition of the pulmonary interstitium during normal development of the human fetus. Pediatr Dev Pathol 2: 424–431.
[42]  Heine UI, Munoz EF, Flanders KC, Roberts AB, Sporn MB (1990) Colocalization of TGF-beta 1 and collagen I and III, fibronectin and glycosaminoglycans during lung branching morphogenesis. Development 109: 29–36.
[43]  McGowan SE (1992) Extracellular matrix and the regulation of lung development and repair. FASEB J 6: 2895–2904.
[44]  Coalson JJ, Winter VT, Gerstmann DR, Idell S, King RJ, et al. (1992) Pathophysiologic, morphometric, and biochemical studies of the premature baboon with bronchopulmonary dysplasia. Am Rev Respir Dis 145: 872–881.
[45]  Carlton DP, Albertine KH, Cho SC, Lont M, Bland RD (1997) Role of neutrophils in lung vascular injury and edema after premature birth in lambs. J Appl Physiol 83: 1307–1317.
[46]  Margraf LR, Tomashefski JF Jr, Bruce MC, Dahms BB (1991) Morphometric analysis of the lung in bronchopulmonary dysplasia. Am Rev Respir Dis 143: 391–400.
[47]  Thibeault DW, Mabry SM, Ekekezie II, Truog WE (2000) Lung elastic tissue maturation and perturbations during the evolution of chronic lung disease. Pediatrics 106: 1452–1459.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133